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Preface

This book was written during my stay at the Center for Space Plasma and
Aeronomic Research (CSPAR) at the University of Alabama in Huntsville, between
the years 2010 and 2014. During that time, Prof. Dr. Gary Zank was giving the
lecture on Transport Processes in Astrophysics, which included many problems
from the fields of statistics, transport theory (particle transport and turbulence
transport), diffusion theory, and many more. I had the great pleasure to teach some
of the classes and to help him grade the classwork. Since many of the problems were
quite complex and intricate at times, I found it conducive to collect and solve those
problems in a comprehensive way and to organize them in this book.

Therefore, this book is what it is: a solution manual providing detailed and
extensive descriptions of the solutions to nearly all problems given in the lecture
notes Transport Processes in Space Physics and Astrophysics (Lecture Notes in
Physics) by Gary P. Zank, see [5], and on multiple occasions in this book we refer
to the lecture notes for further reading.

At the beginning of each section, we give a brief introduction and repetition of
all information necessary to understand the problems and solutions. However, it has
to be clear that this book cannot substitute the lecture notes and, therefore, should
be understood as a supplement to it. The reader is also referred to any textbooks in
physics and math related to this topic.

Note that some problems and equations have been altered from the lecture
notes to be more consistent with the terminology in this book or to clarify the
concept of the problem itself. For example, Problem 3.3 has been extended by
some subquestions to provide a better idea of the steps necessary to solve the
problem. Some equations have been corrected, for example Eq. (2.112), compare
with Eq. (3.33) in the lecture notes, and for the sake of brevity (and to avoid too
many repetitions) some problems have been omitted altogether. For example, the
problems in Sect. 5.2 from the lecture notes (Transport Equation for Relativistic
Charged Particles) have not been included in this book, since they are similar to the
preceding Sect. 5.1. (5.1.1 The Focussed Transport equation).

I want to thank Prof. Dr. Gary Zank for this wonderful opportunity to write this
book and the freedom I had in writing it. The many conversations and discussions

v



vi Preface

I had with him about this solution book and his lecture notes gave me a deep
insight into the field of Transport Processes in Astrophysics and certainly a better
understanding for many of the problems in this book. I want to thank him especially
for reading the manuscript and his numerous explanations, which made the solutions
much more readable and understandable. However, despite careful readings of the
manuscript, I cannot rule out any errors, typos, or mislabeling. Needless to say that
all remaining errors are my own.

I also want to thank my colleagues at CSPAR, for their valuable discussions and
comments regarding some specific problems.

Lastly, I want to thank all the students who so tenaciously and thoroughly worked
through all the problems. Their comments and discussions helped tremendously to
improve the readability of this solution book. With their valuable comments and
discussions, I was able to go into more detail where it was necessary and leave
things out that were only of minor importance.

I hope that this book might be helpful not only to students but also to researchers
and anyone who is interested in the exciting field of astrophysics.

Kaiserslautern, Germany Alexander Dosch
July 2015



Contents

1 Statistical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Probability Set Function .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Random or Stochastic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The Probability Density Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The Distribution Function .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Expectations and Moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Conditional Probability and Marginal and Conditional

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.7 Stochastic Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.8 Particular Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.8.1 The Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.8.2 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.3 The Normal or Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . 62

1.9 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.10 The Language of Fluid Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2 The Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.1 Derivation of the Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . 77
2.2 The Boltzmann Collision Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.3 The Boltzmann Equation and the Fluid Equations .. . . . . . . . . . . . . . . . . . 92
2.4 The Chapman-Enskog Expansion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.5 Application 1: Structure of Weak Shock Waves. . . . . . . . . . . . . . . . . . . . . . 114
2.6 Application 2: The Diffusion and Telegrapher Equations . . . . . . . . . . . 129

3 Collisional Charged Particle Transport in a Magnetized Plasma . . . . . . 137
3.1 The Kinetic Equation and Moments for a Magnetized Plasma . . . . . . 137
3.2 Markov Processes, the Chapman-Kolmogorov Equation,

and the Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3 Collision Dynamics, the Rosenbluth Potentials,

and the Landau Collision Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.4 Electron-Proton Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.5 Collisions with a Maxwellian Background .. . . . . . . . . . . . . . . . . . . . . . . . . . 156

vii



viii Contents

3.6 Collision Operator for Fast Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.7 Transport Equations for a Collisional Electron-Proton Plasma. . . . . . 160
3.8 Application 1: Transport Perpendicular to a Mean

Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.9 Application 2: The Equations of Magnetohydrodynamics . . . . . . . . . . 179
3.10 Application 3: MHD Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4 Charged Particle Transport in a Collisionless Magnetized Plasma . . . . 195
4.1 The Focussed Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.2 Quasi-Linear Transport Theory of Charged Particles:

Derivation of the Scattering Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.3 Hydrodynamic Description of Energetic Particles . . . . . . . . . . . . . . . . . . . 213
4.4 Application 1: Diffusive Shock Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 228

5 The Transport of Low Frequency Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
5.1 Mean Field Description of MHD Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 235
5.2 The Transport Equation for the Magnetic Energy Density . . . . . . . . . . 239
5.3 Modelling the Dissipation Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



Chapter 1
Statistical Background

1.1 Probability Set Function

Suppose we perform n independent experiments under identical conditions.
If an outcome A results nA times, then the probability that A occurs is

P.A/ D lim
n!1

nA

n
: (1.1)

Let C be the set of all possible outcomes of a random experiment, then C
is called the sample space. An outcome is a point or element in the sample
space. The sample space can be finite or infinite.

Definition 1.1 If P.C/ is defined for a subset C of the sample space C, and
C1;C2;C3; : : : are disjoint subsets of the sample space C, then P.C/ is called
the probability set function of the outcome of the random experiment if

• P.C/ � 0

• P.C1 [ C2 [ C3 : : : / D P.C1/C P.C2/C P.C3/C : : :

• P.C/ D 1.

Theorem 1.1 For each C � C, P.C/ D 1 � P.C�/, where C� denotes the
complement of C.

Theorem 1.2 P.;/ D 0.

Theorem 1.3 If C1 and C2 are subsets of C such that C1 � C2, then P.C1/ �
P.C2/.

(continued)

© Springer International Publishing Switzerland 2016
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2 1 Statistical Background

Theorem 1.4 For each C � C, 0 � P.C/ � 1.

Theorem 1.5 If C1 � C and C2 � C, then

P.C1 [ C2/ D P.C1/C P.C2/ � P.C1 \ C2/: (1.2)

Problem 1.1 A positive integer from 1 to 6 is randomly chosen by casting a die.
Thus the sample space is C D fc W c D 1; 2; 3; 4; 5; 6g. Let C1 D fc W c D 1; 2; 3; 4g
and C2 D fc W c D 3; 4; 5; 6g be subsets of the sample space C. If the probability
set function P assigns a probability of 1=6 to each c 2 C, compute P.C1/, P.C2/,
P.C1 \ C2/, and P.C1 [ C2/!

Solution The probability of each outcome c 2 C is given by P.c/ D 1=6. The
probability to chose a number from the subsets C1 and C2 is then given by

P.C1/ D P.1/C P.2/C P.3/C P.4/ D 4

6
D 2

3

P.C2/ D P.3/C P.4/C P.5/C P.6/ D 4

6
D 2

3
:

The probability for the intersection and union of the subsets is given by

P.C1 \ C2/ D P.3/C P.4/ D 2

6
D 1

3

P.C1 [ C2/ D P.C1/C P.C2/� P.C1 \ C2/ D 2

3
C 2

3
� 1

3
D 1:

Problem 1.2 Draw a number without replacement from the set f1; 2; 3; 4; 5g, i.e.,
choose a number, and then a second from the remaining numbers. The sample space
is then given by

C D fc W c D .1; 2/.1; 3/.1; 4/.1; 5/.2; 1/.2; 3/.2; 4/.2; 5/.3; 1/.3; 2/

.3; 4/.3; 5/.4; 1/.4; 2/.4; 3/.4; 5/.5; 1/.5; 2/.5; 3/.5; 4/g:

Assume, that all 20 possible results have the same probability P.c/ D 1=20. Find
the probability that an odd digit will be selected (A) the first time (B) the second
time and (C) both times.

Solution

A. The probability of finding an odd digit the first time is given by

P.odd first/ D 12

20
D 3

5
:



1.1 Probability Set Function 3

B. The probability of finding an odd digit the second time is given by

P.odd second/ D P.odd & odd/C P.even & odd/

D 3

5
� 2
4

C 2

5
� 3
4

D 3

5
:

C. The probability of finding an odd digit both times (first and second) is given by

P.odd & odd/ D 3

5
� 2
4

D 3

10
:

Problem 1.3 Draw one card from an ordinary deck of 52 cards and suppose that
the probability set function assigns a probability of 1=52 to each of the possible
outcomes c. Let C1 denote the collection of 13 hearts and C2 the collection of 4
kings. Compute P.C1/, P.C2/, P.C1 \ C2/, and P.C1 [ C2/!

Solution The collection of 13 hearts is described by the subset

C1 D fc W c D ~2;~3;~4; : : : ;~Aceg :

Since there are only 13 cards of hearts in the deck, the probability of drawing one
card of hearts is given by

P.C1/ D 13

52
D 1

4
:

Similarly, the collection of 4 kings is described by the subset

C2 D fc W c D }King;~King;�King;|Kingg

and the probability that one card drawn from the deck is a king is given by

P.C2/ D 4

52
D 1

13
:

Since there is only one king of hearts in the deck we find for the intersection

P.C1 \ C2/ D 1

52
:

The union of both subsets (i.e., collecting 13 cards of hearts and the remaining 3
kings) is then given by

P.C1 [ C2/ D P.C1/C P.C2/� P.C1 \ C2/ D 13

52
C 4

52
� 1

52
D 4

13
:



4 1 Statistical Background

Problem 1.4 A coin is tossed as many times as necessary to give one head. The
sample space is therefore C D fc W c D H;TH;TTH; : : : g. The probability set
function assigns probabilities 1=2, 1=4, 1=8, . . . , respectively. Show that P.C/ D
1. Suppose the subsets C1 D fc W c D H;TH;TTH;TTTH;TTTTHg and C2 D
fc W c D TTTTH;TTTTTHg. Compute P.C1/, P.C2/, P.C1 \ C2/, and P.C1 [ C2/!

Solution The probability of the sample space can be calculated by using the
convergence of the geometric series

P1
xD0 qx D 1=.1 � q/ for q < 1. For q D 1=2

we find

P.C/ D 1

2
C 1

4
C 1

8
C 1

16
C : : :

D
1X

nD1

�
1

2

�n

D
1X

nD0

�
1

2

�n

� 1 D 1

1 � 1=2
� 1 D 1:

The probabilities of the subsets are

P.C1/ D 1

2
C 1

4
C 1

8
C 1

16
C 1

32
D 31

32

P.C2/ D 1

32
C 1

64
D 3

64
:

The probability of the intersection P.C1 \ C2/ is the probability of the outcome
c D TTTTH, so that

P.C1 \ C2/ D 1

32

P.C1 [ C2/ D 31

32
C 3

64
� 1

32
D 63

64
:

Problem 1.5 A coin is tossed until for the first time the same result appears twice in
succession. Let the probability for each outcome requiring n � 2 tosses be 1=2n�1.
Describe the sample space, and find the probability of the events (A) the tosses end
before the sixth toss, (B) an even number of tosses is required.

Solution The sample space is given by

C D
�

c W c D
�
.TT/; .THH/; .THTT/; .THTHH/; .THTHTT/; : : :
.HH/; .HTT/; .HTHH/; .HTHTT/; .HTHTHH/; : : :

�

with the probability P.n/ D 1=2n�1 for n � 2. As an example, for n D 2 the
possible outcomes are HH;HT;TH;TT with a probability of 1=4 for each outcome.
The event that the result appears twice in succession (that is either TT or HH) has the
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probability P.TT or HH/ D P.TT/CP.HH/ D 1=2. Similarly, for n D 3 there are 8
possible outcomes (HHH;HHT;HTH;HTT; : : : ) with a probability of 1=8 for each
outcome. Obviously, the outcomes TTT and HHH can never occur, since the event
of two identical results in succession already would have been fulfilled after two
tosses. However, since we are interested in the probability of an outcome it is more
important that an outcome can occur rather than it will. Therefore, the probability
for n D 3 is P.THH or HTT/ D P.THH/C P.HTT/ D 1=4.

A. The event that the tosses end before the sixth toss (n � 5) can be described by
the subset

A1 D
�

c W c D
�
.TT/; .THH/; .THTT/; .THTHH/; .THTHTT/
.HH/; .HTT/; .HTHH/; .HTHTT/; .HTHTHH/

�

:

The probability for this event is then given by

P.A1/ D
5X

nD2

1

2n�1 D 1

2
C 1

22
C 1

23
C 1

24
D 15

16
:

B. For an even number of tosses (n D 2; 4; 6; 8; : : : ) we introduce for simplicity
n D 2i with i D 1; 2; 3; 4; : : : , so that the probability is given by

P.n D even/ D
1X

iD1

1

22i�1 D 2

1X

iD1

1

22i
D 2

1X

iD1

�
1

4

�i

D 2

1 � 1
4

� 2 D 2

3
;

where we used the convergence of the geometric series (see also the previous
problem).

Problem 1.6 Find P.C1 \ C2/ if the sample space is C D C1 [ C2, P.C1/ D 0:8

and P.C2/ D 0:5!

Solution Since the sample space is given by C D C1 [ C2 we find immediately
P.C/ D P.C1 [ C2/ D 1. From P.C1 [ C2/ D P.C1/ C P.C2/ � P.C1 \ C2/ it
follows that

P.C1 \ C2/ D P.C1/C P.C2/� P.C1 [ C2/ D 0:8C 0:5 � 1 D 0:3:

Problem 1.7 Suppose C � C D fc W 0 < c < 1g with C D fc W 4 < c < 1g and
P.C/ D R

C e�xdx. Determine P.C/, P.C�/, and P.C [ C�/, where C� denotes the
complement of C.

Solution The probability of subset C is given by

P.C/ D
Z 1

4

e�xdx D �e�xj14 D e�4



6 1 Statistical Background

and the probability of the complementary set C� D fc W 0 < c � 4g is calculated by

P.C�/ D P.C/� P.C/ D 1 � e�4:

Since the subsets C and C� are disjoint and the sample space is defined by C D
C C C�, we find easily

P.C/ D P.C [ C�/ D P.C/C P.C�/ D
Z 1

0

e�xdx D �e�xj10 D 1:

Problem 1.8 If C � C is a subset for which
R

C e�jxjdx exists, where the sample
space is given by C D fc W �1 < x < 1g, then show that this set function is not a
probability set function. What constant should the integral be multiplied by to make
it a probability set function?

Solution The probability of the sample space is per definition P.C/ D 1, thus,

1
ŠD P.C/ D

Z 1

�1
e�jxjdx D

Z 0

�1
exdx C

Z 1

0

e�xdx:

Substituting now y D �x in the first integral and using the results from the previous
Problem 1.7 we find

P.C/ D
Z 1

0

e�ydy C
Z 1

0

e�xdx D 2

Z 1

0

e�xdx D 2 ¤ 1:

Hence the set function is not a probability set function. The set function has to be
multiplied by 1=2 to make it a probability set function.

Problem 1.9 If C1 and C2 are two arbitrary subsets of the sample space C, show
that

P.C1 \ C2/ � P.C1/ � P.C1 [ C2/ � P.C1/C P.C2/:

Solution

A. First, we show that P.C1 [ C2/ � P.C1/C P.C2/. From Theorem 1.5 we find

P.C1 [ C2/ D P.C1/C P.C2/ � P.C1 \ C2/:

Since P.C/ � 0, i.e., any probability has to be larger or equal to zero, it follows
immediately that

P.C1 [ C2/ � P.C1/C P.C2/;

where we used P.C1 \ C2/ � 0.
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B. In the next step we show that P.C1/ � P.C1 [ C2/. Here we use the fact that the
union of both subsets can be described by C1 [ C2 D C1 [ �

C�
1 \ C2

�
, where

C1 and .C�
1 \ C2/ are disjoint. Hence we have

P.C1 [ C2/ D P.C1/C P.C�
1 \ C2/

and it follows that

P.C1 [ C2/ � P.C1/;

since P.C�
1 \ C2/ � 0.

C. In the last step we show P.C1 \ C2/ � P.C1/. Here we use the relation C1 D
.C1 \ C2/ [ �

C1 \ C�
2

�
, where .C1 \ C2/ and

�
C1 \ C�

2

�
are disjoint subsets.

We find

P.C1/ D P .C1 \ C2/C P
�
C1 \ C�

2

�

and it follows immediately that

P.C1/ � P.C1 \ C2/;

since P
�
C1 \ C�

2

� � 0.

1.2 Random or Stochastic Variables

Definition 1.2 Consider a random experiment with sample space C. A
function X, that assigns to each outcome c 2 C one and only one real number
x D X.c/, is a random variable, and the space of X is the set of real numbers
A D fx W x D X.c/; c 2 Cg.

Random variables can be discrete or continuous. Discrete random variables
are those that take on a finite or denumerably infinite number of distinct
values. Continuous random variables are those that take on a continuum of
values within a given range.

Problem 1.10 Select a card from an ordinary deck of 52 playing cards with
outcome c. Let X.c/ D 4 if c is an ace, X.c/ D 3 for a king, X.c/ D 2 for a
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queen, X.c/ D 1 for a jack, and X.c/ D 0 otherwise. Suppose P.C/ assigns a
probability 1=52 to each outcome c. Describe the probability P.A/ on the space
A D fx W x D 0; 1; 2; 3; 4g of the random variable X.

Solution Since there are only 4 aces, 4 kings, 4 queens and 4 jacks in the game,
we find

P.X D 4/ D P.X D 3/ D P.X D 2/ D P.X D 1/ D 4

52
D 1

13

and for the remaining cards

P.0/ D 36

52
D 9

13
:

Problem 1.11 Suppose the probability set function P.A/ of the random variable X
is P.A/ D R

A f .x/dx, where f .x/ D 2x=9, x 2 A D fx W 0 < x < 3g. For A1 D
fx W 0 < x < 1g and A2 D fx W 2 < x < 3g, compute P.A1/, P.A2/, and P.A1 [ A2/.

Solution The probabilities for the subsets A1 and A2 are given by

P.A1/ D
Z 1

0

2x

9
dx D x2

9

ˇ
ˇ
ˇ
ˇ

1

0

D 1

9

P.A2/ D
Z 3

2

2x

9
dx D x2

9

ˇ
ˇ
ˇ
ˇ

3

2

D 1 � 4

9
D 5

9
:

Since A1 and A2 are disjoint we find

P.A1 [ A2/ D P.A1/C P.A2/ D 1

9
C 5

9
D 2

3
:

Problem 1.12 Suppose that the sample space of a random variable X is given
by A D fx W 0 < x < 1g. If the subsets A1 D fx W 0 < x < 1=2g and A2 D
fx W 1=2 � x < 1g, find P.A2/, if P.A1/ D 1=4.

Solution Since the sample space is identical to the union of both subsets, i.e.,
A1 [ A2 D A, we find with P.A/ D 1,

P.A2/ D 1 � P.A1/ D 1 � 1

4
D 3

4
:
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1.3 The Probability Density Function

Whenever a probability set function P.A/, with A � A and sample space A,
can be expressed as

P.A/ D P.X 2 A/ D
X

A

f .x/ (1.3)

P.A/ D P.X 2 A/ D
Z

A
f .x/ dx; (1.4)

then X is a random variable of discrete or continuous type, and X has a discrete
or continuous distribution.

The probability P.A/ is determined completely by the probability density
function (pdf), f .x/, whether or not X is a discrete or continuous random
variable.

Problem 1.13 Find the constant a that ensures that f .x/ is a pdf of the random
variable X for

A.

f .x/ D
(

a
�
2
3

�x
for x D 1; 2; 3; : : :

0 elsewhere

B.

f .x/ D
(

f .x/ D axe�x for 0 < x < 1
0 elsewhere.

Solution

A. The sample space is given by A D fx W x D 1; 2; 3; 4; : : : g. By using the
convergence of the geometric series

P1
xD0 qx D 1=.1 � q/ for q < 1 the

probability set function is

1
ŠD P.A/ D

1X

xD1
a

�
2

3

�x

D a

" 1X

xD0

�
2

3

�x

� 1

#

D 2a:

Therefore, the constant is a D 1=2.



10 1 Statistical Background

B. The sample space is given by A D fx W 0 < x < 1g. The probability set
function is

1
ŠD P.A/ D

Z 1

0

axe�xdx
p:I:D a Œ�xe�x�10 C a

Z 1

0

e�x D �ae�xj10 D a;

where we used integration by parts. The constant is a D 1.

Problem 1.14 Consider a function of the random variable X such that

f .x/ D

8
ˆ̂
<

ˆ̂
:

ax 0 � x < 10

a.20� x/ 10 � x < 20

0 elsewhere:

(1.5)

Find a so that f .x/ is a probability density function and sketch the graph of the pdf.
Compute P.X � 10/ and P.15 � X � 20/.

Solution The sample space is given by C D fx W 0 � x < 20g.

1
ŠD
Z 10

0

dx ax C
Z 20

10

dx a.20� x/ D 100a:

The parameter has to be a D 1=100 to obtain a pdf. The graph of the pdf is shown
in Fig. 1.1.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 1.1 Shown is the pdf from Eq. (1.5) for the parameter a D 100
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The probabilities are then calculated by

P.X � 10/ D 1

100

Z 20

10

dx .20� x/ D 0:5

and

P.15 � X � 20/ D 1

100

Z 20

15

dx .20� x/ D 0:125:

Problem 1.15 Let f .x/ D x=15, x D 1; 2; 3; 4; 5, 0 elsewhere, be the pdf of X. Find
P.X D 1 or X D 2/, P.1=2 < X < 5=2/, and P.1 � X � 2/.

Solution First we note that this probability density function is discrete and we
find

P.X D 1 or X D 2/ D
2X

xD1
f .x/ D

2X

xD1

x

15
D 1

15
C 2

15
D 1

5

P.
1

2
< X <

5

2
/ D

2X

xD1

x

15
D 1

5

P.1 � X � 2/ D
2X

xD1

x

15
D 1

5
:

Problem 1.16 Compute the probability set functions P.jXj < 1/ and P.X2 < 9/

for the following pdfs of X: (A) f .x/ D x2=18, �3 < x < 3, 0 elsewhere, and (B)
f .x/ D .x C 2/=18, �2 < x < 4, 0 elsewhere.

Solution

A. The probability set functions for the first pdf are given by

P.jXj < 1/ D P.�1 < X < 1/ D
Z 1

�1
x2

18
dx D x3

54

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

27

and

P.X2 < 9/ D P.�3 < X < 3/ D
Z 3

�3
x2

18
dx D x3

54

ˇ
ˇ
ˇ
ˇ

3

�3
D 1:

B. The probability set functions for the second pdf are given by

P.jXj < 1/ D P.�1 < X < 1/ D
Z 1

�1
x C 2

18
dx D

x2

2
C 2x

18

ˇ
ˇ
ˇ
ˇ
ˇ

1

�1
D 2

9
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and

P.X2 < 9/ D P.�3 < X < 3/ D
Z 3

�2
x C 2

18
dx D

x2

2
C 2x

18

ˇ
ˇ
ˇ
ˇ
ˇ

3

�2
D 25

36
:

Problem 1.17 Given P.X > a/ D e��a.�a C 1/, with � > 0; a � 0, find the pdf of
X and P.X > ��1/.

Solution Let f .x/ be a pdf so that

P.X > a/ D
Z 1

a
f .x/ dx D e��a.�a C 1/:

Now, we take the derivative of the integral (on the left side) with respect to a and
obtain an expression for the pdf at point a. According to the Fundamental Theorem
of calculus we find

d

da

Z 1

a
f .x/ dx D �f .a/:

The derivative of the term on the right side is

d

da

�
.�a C 1/e��a

	 D ��2ae��a:

Since left and right hand side have to be equal we find (after substituting a ! x)

f .x/ D �2xe��x

and, thus,

P.X > ��1/ D
Z 1

��1

f .x/ dx D 2

e
:

Problem 1.18 Let f .x/ D x�2, with 1 < x < 1, 0 elsewhere, be the pdf of X. If
A1 D fx W 1 < x < 2g and A2 D fx W 4 < x < 5g, find P.A1 [ A2/ and P.A1 \ A2/.

Solution Since A1 and A2 are disjoint subsets we find

P.A1 [ A2/ D P.A1/C P.A2/ D
Z 2

1

1

x2
dx C

Z 5

4

1

x2
dx

D



�1
x

�2

1

C



�1
x

�5

4

D 11

20

and

P.A1 \ A2/ D 0:
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Problem 1.19 Let f .x; y/ D 4xy, 0 < x < 1 and 0 < y < 1, 0 elsewhere, be the pdf
of X and Y. Find P.0 < X < 1

2
; 1
4
< Y < 1/, P.X D Y/, P.X < Y/, and P.X � Y/.

Solution The probability is given by

P.0 < X <
1

2
;
1

4
< Y < 1/ D

Z 1=2

0

dx
Z 1

1=4

dy4xy D x2
ˇ
ˇ1=2
0

� y2
ˇ
ˇ1
1=4

D 15

64

and

P.X < Y/ D
Z 1

0

Z y

0

4xy dx dy D
Z 1

0

2y3 dy D 1

2
:

Similarly we find

P.X � Y/ D 1

2
:

Since P.X D k/ D 0, where k is a constant, we find

P.X D Y/ D 0:

Problem 1.20 Given that the random variable X has the pdf

f .x/ D
(
5
a �0:1a < x < 0:1a

0 elsewhere

and P.jXj < 2/ D 2P.jXj > 2/, find the value of a.

Solution As a first condition we find

P.jXj < 2/ D P.�2 < X < 2/ D
Z 2

�2
f .x/ dx D

Z 2

�2
5

a
dx D 5

a
x
ˇ
ˇ
ˇ
2

�2 D 20

a
:

Obviously, we find the restriction a � 20, since any probability has to be P � 1.
The second condition is derived by

P.jXj > 2/ D P
�
� a

10
< X < �2



C P

�
2 < X <

a

10




D
Z �2

�a=10
f .x/ dx C

Z a=10

2

f .x/ dx D
Z �2

�a=10

5

a
dx C

Z a=10

2

5

a
dx

D 5

a




x
ˇ
ˇ
ˇ
�2
�a=10

C x
ˇ
ˇ
ˇ
a=10

2

�

D 1 � 20

a
:
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Since P.jXj < 2/ D 2P.jXj > 2/ we find that

20

a
D 2 � 40

a
;

and, by solving this equation for a, that a D 30.

1.4 The Distribution Function

Definition 1.3 Suppose a random variable X has the probability set function
P.A/, and is a 1D set. For a real number x, let A D fy W �1; y � xg, so that
P.A/ D P.X 2 A/ D P.X � x/: The probability is thus a function of x, say
F.x/ D P.X � x/. The function F.x/ is called the distribution function of the
random variable X. Hence, if f .x/ is the pdf of X, we have

F.x/ D
X

y�x

f .y/ and F.x/ D
Z

y�x
f .y/ dy (1.6)

for a discrete and a continuous random variable X.

Problem 1.21 Let f .x/ be the pdf of a random variable X. Find the distribution
function F.x/ of X and sketch the graph for

A.

f .x/ D
(
1 for x D 0

0 elsewhere

B.

f .x/ D
(
1
3

for x D �1; 0; 1
0 elsewhere

C.

f .x/ D
(

x
15

for x D 1; 2; 3; 4; 5

0 elsewhere
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D.

f .x/ D
(
3.1 � x/2 for 0 < x < 1

0 elsewhere

E.

f .x/ D
(

x�2 for 1 < x < 1
0 elsewhere

F.

f .x/ D
(
1
3

for 0 < x < 1 and 2 < x < 4

0 elsewhere:

Solution

A. The distribution function is given by

F.x/ D
(
0 for x < 0

1 for 0 � x
(1.7)

and the graph is shown in Fig. 1.2.

Fig. 1.2 Shown is the probability distribution function Eq. (1.7)
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Fig. 1.3 Shown is the probability distribution function Eq. (1.8)

B. The distribution function is given by

F.x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 for x < �1
1
3

for � 1 � x < 0
2
3

for 0 � x < 1

1 for 1 � x

(1.8)

and the graph is shown in Fig. 1.3.
C. The distribution function is given by

F.x/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

0 for x < 1
1
15

for 1 � x < 2
3
15

for 2 � x < 3
6
15

for 3 � x < 4
10
15

for 4 � x < 5

1 for 5 � x

(1.9)

and the graph is shown in Fig. 1.4.
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Fig. 1.4 Shown is the probability distribution function Eq. (1.9)

Fig. 1.5 Shown is the probability distribution function Eq. (1.10)

D. The distribution function is given by

F.x/ D
8
<

:

R x
�1 0 dy D 0 for x < 0R x
0
3.1� y/2 dy D �.1 � x/3 C 1 for 0 � x < 1

1 for 1 � x
(1.10)

and the graph is shown in Fig. 1.5.
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Fig. 1.6 Shown is the probability distribution function Eq. (1.11)

E. The distribution function is given by

F.x/ D
( R x

�1 0 dy D 0 for x < 1
R x
1

1
y2

dy D 1 � 1
x for 1 � x < 1 (1.11)

and the graph is shown in Fig. 1.6.
F. The distribution function is given by

F.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0 for x < 0
R x
0
1
3

dy D x
3

for 0 � x < 1
1
3

for 1 � x < 2
1
3

C R x
2
1
3

dy D x
3

� 1
3

for 2 � x < 4

1 for 4 � x

(1.12)

and the graph is shown in Fig. 1.7.

Problem 1.22 Given the distribution function

F.x/ D

8
ˆ̂
<

ˆ̂
:

0; for x < �1
xC2
4
; for � 1 � x < 1

1 for 1 � x:

(1.13)

Sketch F.x/ and compute P .�1=2 < X < 1=2/, P.X D 0/, P.X D 1/, and P.2 <
X � 3/!
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Fig. 1.7 Shown is the probability distribution function Eq. (1.12)

Fig. 1.8 Shown is the probability distribution function given by Eq. (1.13)

Solution The distribution function is shown in Fig. 1.8. For the first two
probabilities we find

P

�

�1
2
< X <

1

2

�

D F

�
1

2

�

� F

�

�1
2

�

D 5

8
� 3

8
D 2

8
D 1

4

P.X D 0/ D 0;
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since F.x/ is continuous at x D 0. At position x D 1 the function jumps from 3=4

to 1 and is therefore not continuous. In this case we use

P.X D 1/ D F.1/� F.1�/ D 1 � 3

4
D 1

4
:

Between position x D 2 and x D 4 the function is continuous again and we find

P.2 < X � 3/ D F.3/� F.2/ D 1 � 1 D 0:

Problem 1.23 Suppose the random variable X has a distribution function F.x/ D
1 � e�0:1x, with x � 0. Find (A) the pdf of X, (B) the probability P.X > 100/,
and (C) let Y D 2X C 5 and find the corresponding distribution function G.y/.

Solution The sample space of the random variable X is A D fx W x � 0g.

A. The probability density function is given by the derivative with respect to x and
we obtain

f .x/ D dF.x/

dx
D
(
0:1e�0:1x x � 0

0 elsewhere.

B. Finding P.X > 100/ can be shown in two ways: First one can set

P.X > 100/ D 1 � P.X < 100/ D 1 � F.100/ D 1 � �
1 � e�10� D e�10:

Secondly, one can use the pdf to obtain

P.X > 100/ D
Z 1

100

f .x/ dx D
Z 1

100

0:1e�0:1x dx D e�10:

C. Now, with the coordinate transformation Y D 2X C 5 the sample space A maps
onto the new sample space B D fy W y � 5g and we have

G.y/ D P.Y � y/ D P.2X C 5 � y/ D P

�

X � y � 5

2

�

D F

�
y � 5

2

�

:

Obviously, we find for the distribution function of the random variable Y,

G.y/ D
(
1 � e�0:05.y�5/ y � 5

0 elsewhere.

Problem 1.24 Let f .x/ D 1, 0 < x < 1, 0 elsewhere, be the pdf of X. Find the
distribution function and pdf of Y D p

X.
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Solution The new variable Y has its own sample space, given by

B D ˚
y W y D p

x ) 0 < y < 1
�
:

The probability set function of the random variable Y is then given by

G.y/ D P.Y � y/ D P.
p

X � y/ D P.X � y2/;

where y obeys 0 < y < 1. It follows immediately that

G.y/ D
Z y2

�1
f .x/ dx D

8
ˆ̂
<

ˆ̂
:

0 for y < 0
R y2

0
dx D y2 for 0 � y < 1

1 for 1 � y:

The probability density function is defined by g.y/ D G0.y/ and we find

g.y/ D
(
2y for 0 � y < 1

0 elsewhere:

Problem 1.25 Let f .x/ D x=6, x D 1; 2; 3, 0 elsewhere, be the pdf of X. Find the
distribution function and pdf for Y D X2.

Solution Note that the random variable is discrete. The sample space of the
random variable X is given by A D fx W x D 1; 2; 3g. The new random variable
is defined by Y D X2. Thus, the transformation y D u.x/ D x2 maps the sample
space A onto B D fy W y D 1; 4; 9g. This transformation is, in general, not injective
and the inverse transformation is given by x D u�1.y/ D ˙p

y. Here, however,
the sample space A has no negative values, therefore, we choose the single-valued
inverse function x D p

y.
The probability density function of the random variable Y D X2 is then given by

g.y/ D
( p

y
6

for y D 1; 4; 9

0 else.

The probability distribution function is then given by

G.y/ D
X

x�y

g.x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 for y < 1
1
6

for 1 � y < 4
3
6

D 1
2

for 4 � y < 9

1 for 9 � y:
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Problem 1.26 Suppose that a random variable X has the pdf

f .x/ D
(

x C 1
2

for 0 � x � 1

0 elsewhere:

Determine (A) the distribution function F.x/, (B) the probability density function of
the random variable Y D X2, and (C) the probability P.Y > 0:36/.

Solution

A. The distribution function is then given by

F.x/ D
Z x

�1
f .w/ dw D

8
ˆ̂
<

ˆ̂
:

0 for x < 0
R x
0

�
w C 1

2

	
dw D x2

2
C x

2
for 0 � x < 1

1 for 1 � x:

B. The transformation is given by u.x/ D y D x2. The inverse transformation is
then given by u�1 D x D ˙p

y. Again, the sample space of X has no negative
values, therefore, we choose the single-valued inverse function u�1 D x D p

y.
That is

G.y/ D P.Y � y/ D P.X2 � y/ D P.X � p
y/

with the sample space for the random variable Y given by 0 � y � 1. The
probability distribution function is then

G.y/ D

8
ˆ̂
<

ˆ̂
:

R xDp
y

�1 0 dx D 0 for y < 0
R xDp

y
0

�
x C 1

2

	
dx D yCp

y
2

for 0 � y < 1

1 for 1 � y:

The probability density function is then given by g.y/ D G0.y/,

g.y/ D
(
1
2

C 1
4
p

y for 0 � y � 1

0 elsewhere:

C. The probability P.Y > 0:36/ is equivalent to

P.Y > 0:36/ D 1 � P.Y � 0:36/ D 1 � G.y D 0:36/

D 1 � 0:36C p
0:36

2
D 0:52:
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Problem 1.27 Suppose that a random variable X has the pdf

f .x/ D
(
1
2

for � 1 � x � 1

0 elsewhere:

Determine (A) the distribution function F.x/, (B) the probability density function of
the random variable Y D X2, and (C) the probability P.Y > 0:36/.

Solution

A. The distribution function is then given by

F.x/ D
Z x

�1
f .w/ dw D

8
ˆ̂
<

ˆ̂
:

0 for x < �1
R x

�1
1
2

dw D x
2

C 1
2

for � 1 � x � 1

1 for 1 < x:

B. The transformation is given by u.x/ D y D x2. The inverse transformation is
then given by u�1 D x D ˙p

y. Here, the sample space of X has negative
values, therefore,

G.y/ D P.Y � y/ D P.X2 � y/ D P.�p
y � X � p

y/

with the new sample space B D fy W 0 � y � 1g for the random variable Y. The
probability distribution function is then

G.y/ D

8
ˆ̂
<

ˆ̂
:

0 for y < 0
Rp

y

�p
y
1
2

dx D p
y for 0 � y � 1

1 for 1 < y:

The probability density function is then given by g.y/ D G0.y/,

g.y/ D
(

1
2
p

y for 0 � y � 1

0 elsewhere:

C. The probability P.Y > 0:36/ is equivalent to

P.Y > 0:36/ D 1� P.Y � 0:36/ D 1� G.y D 0:36/ D 1 � p
0:36 D 0:4:
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1.5 Expectations and Moments

Definition 1.4 Suppose X is a continuous or discrete random variable with
probability density function f .x/ and let u.x/ be a function of X so that

E Œu.x/� D
Z 1

�1
u.x/ f .x/ dxI E Œu.x/� D

X

x

u.x/ f .x/ (1.14)

exists, then E Œu.x/� is called the mathematical expectation or expected value
of u.x/. An important expectation is the moment-generating function of a
random variable X. Suppose there exists a finite real number t for which the
expectation

E
�
etX
� D

Z 1

�1
etx f .x/ dxI E

�
etX
� D

X

x

etx f .x/ dx (1.15)

(continuous or discrete) exists. Then M.t/ D E
�
etX
�

is the moment-generating
function, with M.t D 0/ D 1. In general, for m > 0 an integer, the m-th
derivative of the moment-generating function generates the m-th moment of
the distribution, Mm.0/ D E.Xm/, so that

E.Xm/ D
Z 1

�1
xm f .x/ dxI E.Xm/ D

X

x

xm f .x/: (1.16)

Problem 1.28 Suppose X has the pdf

f .x/ D
(

xC2
18

for � 2 < x < 4

0 elsewhere.

Find E.X/, E
�
.X C 2/3

	
, and E

�
6X � 2.X C 2/3

	
.

Solution From the definition of the expected value (1.14) we find

E.X/ D
Z 4

�2
x2 C 2x

18
dx D



x3

54
C x2

18

�4

�2
D 2

E
�
.X C 2/3

	 D
Z 4

�2
.x C 2/4

18
dx D



.x C 2/5

90

�4

�2
D 432

5

E
�
6X � 2.X C 2/3

	 D 6E.X/� 2E
�
.X C 2/3

	 D �804
5
:
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Problem 1.29 The median of a random variable X is the value x such that the
distribution function F.x/ D 1=2. Compute the median of the random variable X
for the pdf

f .x/ D
(
2x for 0 < x < 1

0 elsewhere.

Solution From the definition of the distribution function we find

F.x/ D
Z x

�1
f .y/ dy D

Z x

0

2y dy D x2 � 1

2
�! x D 1p

2
:

The median is x D 1=
p
2.

Problem 1.30 The mode of a random variable X is the value that occurs most
frequently—sometimes called the most probable value. The value a is the mode
of the random variable X if

f .a/ D max f .x/;

(for a continuous pdf). The mode is not necessarily unique. Compute the mode and
median of a random variable X with pdf

f .x/ D

8
ˆ̂
<

ˆ̂
:

2x
3

for 0 � x < 1
1
3

for 1 � x < 3

0 elsewhere.

Solution The distribution function is given by

F.x/ D
Z x

�1
f .y/ dy D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0
R x
0
2y
3

dy
1
3

C R x
1
1
3

dy

1

D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 for x < 0
x2

3
for 0 � x < 1

x
3

for 1 � x < 3

1 for 3 � x:

The median is defined by F.x/ D 1=2. This is possible only for 1 � x < 3, where
the distribution function is

x

3
D 1

2
�! x D 3

2
:

The mode is the maximum value of the pdf (not the distribution function!).
Analyzing the pdf we find, that for 0 � x < 1 the pdf increases linearly, reaching its
maximum value at x D 1 with f .x D 1/ D 2=3, then jumps to 1=3 for 1 � x < 3.
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Thus, the mode of the pdf is

a D 1 �! f .a/ D 2

3
D max f .x/:

Problem 1.31 Suppose X and Y have the joint pdf

f .x; y/ D
(

e�x�y for 0 < x < 1; 0 < y < 1
0 elsewhere

and that u.X;Y/ D X, v.X;Y/ D Y, and w.X;Y/ D XY. Show that E Œu.X;Y/� �
E Œv.X;Y/� D E Œw.X;Y/�.

Solution We calculate

E.XY/ D
Z 1

0

dy
Z 1

0

dx xy e�x�y D 1

E.X/ D
Z 1

0

dy
Z 1

0

dx x e�x�y D 1

E.Y/ D
Z 1

0

dy
Z 1

0

dx y e�x�y D 1

and hence

E.X/ � E.Y/ D 1 D E.XY/:

Alternatively, we find for E Œw.X;Y/�

E.XY/ D
Z 1

0

dy
Z 1

0

dx xy e�x�y

and for E Œu.X;Y/� � E Œv.X;Y/�

E.X/ � E.Y/ D

Z 1

0

dy
Z 1

0

dx x e�x�y

�

�

Z 1

0

dy
Z 1

0

dx y e�x�y

�

D

Z 1

0

dy e�y
Z 1

0

dx x e�x

�

�

Z 1

0

dy y e�y
Z 1

0

dx e�x

�

:

Since
R1
0 dx e�x D 1 it follows immediately that

E.X/ � E.Y/ D
Z 1

0

dx x e�x �
Z 1

0

dy y e�y

D
Z 1

0

dy
Z 1

0

dx xy e�x�y D E.XY/ D E Œw.X;Y/� :
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Problem 1.32 If X and Y are two exponentially distributed random variables with
pdfs

f .x/ D 2e�2x; x � 0

f .y/ D 4e�4y; y � 0;

calculate E.X C Y/.

Solution The expected value for X C Y is given by

E.X C Y/ D E.X/C E.Y/ D
Z 1

0

dx xf .x/C
Z 1

0

dy yf .y/

D 2

Z 1

0

dx x e�2x C 4

Z 1

0

dy y e�4y D 3

4
:

Problem 1.33 Suppose X and Y have the joint pdf

f .x; y/ D
(
2 for 0 < x < y; 0 < y < 1

0 elsewhere

and that u.X;Y/ D X, v.X;Y/ D Y, and w.X;Y/ D XY. Show that E Œu.X;Y/� �
E Œv.X;Y/� ¤ E Œw.X;Y/�.

Solution For E Œw.X;Y/� we find

E.XY/ D
Z 1

0

dy
Z y

0

dx 2xy D
Z 1

0

dy y3 D 1

4
:

For E Œu.X;Y/�and E Œv.X;Y/� we find

E.X/ D
Z 1

0

dy
Z y

0

dx 2x D
Z 1

0

dy y2 D 1

3

and

E.Y/ D
Z 1

0

dy
Z y

0

dx 2y D
Z 1

0

dy 2y2 D 2

3
:

Obviously, one finds

E.X/ � E.Y/ D 2

9
¤ 1

4
D E.XY/:
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Problem 1.34 Let X have a pdf f .x/ that is positive at x D �1; 0; 1 and zero
elsewhere. (A) If f .0/ D 1=2, find E.X2/. (B) If f .0/ D 1=2, and if E.X/ D 1=6,
determine f .�1/ and f .1/.

Solution We know, that the probability of the full sample space has to obey

1
ŠD

1X

�1
f .x/ D

1X

xD�1
f .x/ D f .�1/C f .0/C f .1/ D 1

2
C f .�1/C f .1/:

Thus

f .�1/C f .1/ D 1

2
:

A. The expected value of X2 is then given by

E.X2/ D
1X

xD�1
x2f .x/ D .�1/2f .�1/C .0/2f .0/C .1/2f .1/

D f .�1/C f .1/ D 1

2
: (1.17)

B. The expected value of X is given by

E.X/ D 1

6
D

1X

�1
xf .x/ D

1X

xD�1
xf .x/ D �f .�1/C f .1/: (1.18)

Note the minus sign in front of f .�1/! From Eqs. (1.17) and (1.18) it follows
immediately that

f .1/ D 1

3
; f .�1/ D 1

6
: (1.19)

Problem 1.35 A random variable X with an unknown probability distribution has
a mean � D 12 and a variance �2 D 9. Use Chebyshev’s inequality to bound
P.6 < X < 18/ and P.3 < X < 21/.

Solution Chebyshev’s inequality is given by

P.� � n� < X < �C n�/ � 1 � 1

n2
(1.20)

or, alternatively,

P.jX � �j � n/ � �2

n2
and P.jX � �j < n/ � 1 � �2

n2
:
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From the first probability, P.6 < X < 18/, we find with � D 12 and � D 3,

� � n� D 12 � 3n
ŠD 6 �! n D 2

�C n� D 12C 3n
ŠD 18 �! n D 2:

Thus,

P.6 < X < 18/ D P.12� 3 � 2 < X < 12C 3 � 2/ � 1 � 1

22
D 3

4
:

For the second probability, P.3 < X < 21/, we find with � D 12 and � D 3,

� � n� D 12� 3n
ŠD 3 �! n D 3

�C n� D 12C 3n
ŠD 21 �! n D 3:

Thus,

P.6 < X < 18/ D P.12� 3 � 3 < X < 12C 3 � 3/ � 1 � 1

32
D 8

9
:

Problem 1.36 Two distinct integers are chosen randomly without replacement
from the first six positive integers. What is the expected value of the absolute value
of the difference of these two numbers?

Solution We choose two numbers, X1 and X2, from the set 1; 2; 3; 4; 5; 6without
replacement. Since the new variable Y is the absolute value of the difference, Y D
jX1 � X2j, the order of both numbers is unimportant. In this case the number of all
possible outcomes is given by the number of combinations,

C6
2 D

�
6

2

�

D 6Š

2Š.6 � 2/Š D 6Š

2Š4Š
D 15;

where the brackets denote the binomial coefficient (see Eq. (1.29) in Sect. 1.8.1).
The sample space is then given by

C D fc W c D .1; 2/.1; 3/.1; 4/.1; 5/.1; 6/.2; 3/.2; 4/.2; 5/

.2; 6/.3; 4/.3; 5/.3; 6/.4; 5/.4; 6/.5; 6/g :

The sample space of the new variable Y D jX1 � X2j is given by

A D fy W y D 1; 2; 3; 4; 5g ;
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where the probability of getting the result 1 is given by P.Y D 1/ D 5=15. Similarly,
one finds P.Y D 2/ D 4=15, P.Y D 3/ D 3=15, P.Y D 4/ D 2=15 and P.Y D
5/ D 1=15. The pdf can then be found as

f .y/ D
(
6�y
15

for y D 1; 2; 3; 4; 5

0 elsewhere.

The expected value is then simply calculated by

E.Y/ D
1X

�1
y f .y/ D

5X

yD1
y f .y/

D 5

15
C 8

15
C 9

15
C 8

15
C 5

15
D 35

15
D 7

3
	 2:3:

In general we can write for the pdf

f .y/ D
(

n�y
Cn
2

for y D 1; 2; : : : ; n � 1
0 elsewhere

Note that Cn
2 can be written as Cn

2 D n.n � 1/=2 and for n D 6 we obtain the correct
result 15 (see above). For the expected value we can write

E.Y/ D
n�1X

yD1
y f .y/ D 2

n.n � 1/

n�1X

yD1
yn � y2 D n � 2n � 1

3
:

In the last step we used the theorem of finite series,

nX

iD1
i D n.n C 1/

2
;

nX

iD1
i2 D n.n C 1/.2n C 1/

6
:

Problem 1.37 Assume that the random variable X has mean � , standard deviation
� , and moment generating function M.t/. Show that

E

�
X � �

�

�

D 0 E

"�
X � �
�

�2
#

D 1

and

E

�

exp




t

�
X � �

�

���

D e��t=�M
� t

�



:
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Solution Since E.X/ D � with � and � being constants, we find

E

�
X � �
�

�

D ŒE.X/� E.�/�

�
D Œ� � ��

�
D 0

and with �2 D E
�
.X � �/2

	

E

"�
X � �
�

�2
#

D E
�
.X � �/2	

�2
D �2

�2
D 1:

With the MacLaurin’s series for M.t=�/ D P1
nD0

E.Xn/

nŠ

�
t
�

�n
we find

E

�

exp




t

�
X � �

�

���

D E
�
eXt=�e��t=�

	 D E
�
eXt=�

	
E
�
e��t=�

	

D e��t=�E

" 1X

nD0

1

nŠ

�
Xt

�

�n
#

D e��t=�
1X

nD0

E.Xn/

nŠ

� t

�


n

D e��t=�M
� t

�



:

Problem 1.38 Suppose that E
�
.X � b/2

	
exists for a random variable X for all real

b. Show that E
�
.X � b/2

	
is a minimum when b D E ŒX�.

Solution The expected value of .X � b/2 is given by

E
�
.X � b/2

	 D E
�
X2 � 2bX C b2

	 D E
�
X2
	 � E Œ2bX�C E

�
b2
	

D E
�
X2
	 � 2bE ŒX�C b2:

Showing that E
�
.X � b/2

	
is a minimum when b D E ŒX� requires dE=db D 0 and

d2E=db2 > 0. For the first step we find

d

db
E
�
.X � b/2

	 D �2E.X/C 2b
ŠD 0 H) b D E ŒX�

and

d2

db2
E
�
.X � b/2

	 D 2 > 0

shows that b D E ŒX� is in fact a minimum.

Problem 1.39 Suppose that R.t/ D E
�
e.X�b/t

	
exists for a random variable X.

Show that Rm.0/ is the m-th moment of the distribution about the point b, where
m is a positive integer.
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Solution If R.t/ D E
�
et.X�b/

	
exists for a random variable X, then R.t/ is a

moment-generating function with

R.t/ D E
�
et.X�b/

	 D
Z 1

�1
dx e.x�b/tf .x/:

The m-th derivation with respect to t is given by

dmR.t/

dtm
D Rm.t/ D

Z 1

�1
dx .x � b/m e.x�b/tf .x/:

For t D 0 it follows

Rm.0/ D
Z 1

�1
dx .x � b/m f .x/;

which is the m-th moment of the distribution with Rm.0/ D E Œ.X � b/m�.

Problem 1.40 Let �.t/ D ln M.t/, where M.t/ is the moment-generating function
of a distribution. Show that � 0.0/ D � and � 00.0/ D �2.

Solution We summarize that for a moment-generating function

M.0/ D 1 M0.0/ D � M00.0/� M0.0/2 D �2:

The first derivation is then

� 0.t/ D M0.t/
M.t/

) � 0.0/ D M0.0/
M.0/

D �:

The second derivation is then

� 00.t/ D M00.t/M.t/ � M0.t/2

M.t/2
) � 00.0/ D M00.0/M.0/� M0.0/2

M.0/2
D �2:

Problem 1.41 Suppose X is a random variable with mean � and variance �2, and
assume that the third moment E

�
.X � �/3	 exists. The ratio E

�
.X � �/3

	
=�3 is a

measure of the skewness of the distribution. Graph the following pdfs and show that
the skewness is negative, zero, and positive respectively:

A. f .x/ D .x C 1/=2, for �1 < x < 1 and 0 elsewhere
B. f .x/ D 1=2, for �1 < x < 1 and 0 elsewhere
C. f .x/ D .1 � x/=2, for �1 < x < 1 and 0 elsewhere.
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Fig. 1.9 Shown is the pdf f .x/ D .x C 1/=2. For the interval �1 < x < 1 the pdf is increasing.
For all other values of x the pdf is zero

Solution For the third moment we find the general expression

E
�
.X � �/3

	 D E.X3/� 3�E.X2/C 3�2E.X/� �3

D E.X3/� 3�E.X2/C 2�2E.X/: (1.21)

Therefore, we need to calculate the first, the second and the third moment of each
distribution.

A. The graph of the pdf, f .x/ D .x C 1/=2, for �1 < x < 1 and 0 elsewhere, is
shown in Fig. 1.9. The first, second, and third moment is given by

E.X/ D
Z 1

�1
dx x

x C 1

2
D x3

6
C x2

4

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

3

E.X2/ D
Z 1

�1
dx x2

x C 1

2
D x4

8
C x3

6

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

3

E.X3/ D
Z 1

�1
dx x3

x C 1

2
D x5

10
C x4

8

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

5
:

For the variance we find �2 D E.X2/�E.X/2 D 2=9. The skewness is therefore
negative with

E
�
.X � �/3	

�3
D

1
5

� 31
3
1
3

C 21
9
1
3

�
2
9

�3=2 	 �0:57:
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Fig. 1.10 Shown is pdf f .x/ D 1=2. For the interval �1 < x < 1 the curve is constant. For all
other values of x the pdf is zero

B. The graph of the pdf, f .x/ D 1=2, for �1 < x < 1 and 0 elsewhere, is shown in
Fig. 1.10. The moments are

E.X/ D
Z 1

�1
dx

x

2
D x2

4

ˇ
ˇ
ˇ
ˇ

1

�1
D 0

E.X2/ D
Z 1

�1
dx

x2

2
D x3

6

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

3

E.X3/ D
Z 1

�1
dx

x3

2
D x4

8

ˇ
ˇ
ˇ
ˇ

1

�1
D 0:

For the variance we find �2 D E.X2/ � E.X/2 D 1=3. According to Eq. (1.21)
the skewness is zero with

E
�
.X � �/3

	

�3
D 0:

C. The graph is shown in Fig. 1.11. The moments are given by

E.X/ D
Z 1

�1
dx x

1 � x

2
D x2

4
� x3

6

ˇ
ˇ
ˇ
ˇ

1

�1
D �1

3

E.X2/ D
Z 1

�1
dx x2

1 � x

2
D x3

6
� x4

8

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

3
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Fig. 1.11 Shown is the pdf f .x/ D .1�x/=2. For the interval �1 < x < 1 the curve is decreasing.
For all other values of x the pdf is zero

E.X3/ D
Z 1

�1
dx x3

1 � x

2
D x4

8
� x5

10

ˇ
ˇ
ˇ
ˇ

1

�1
D �1

5
:

For the variance we find �2 D E.X2/ � E.X/2 D 2=9. The skewness is positive
with

E
�
.X � �/3

	

�3
D � 1

5
C 31

3
1
3

� 21
9
1
3

�
2
9

�3=2 	 C0:57:

Problem 1.42 Suppose X is a random variable with mean � and variance �2, and
assume that the fourth moment E

�
.X � �/4	 exists. The ratio E

�
.X � �/4	 =�4 is a

measure of the kurtosis of the distribution. Graph the following pdfs and show that
the kurtosis is smaller for the first distribution.

A. f .x/ D 1=2, for �1 < x < 1 and 0 elsewhere
B. f .x/ D 3.1� x2/=4, for �1 < x < 1 and 0 elsewhere

Solution For the fourth moment we find

E
�
.X � �/4

	 D E.X4/� 4�E.X3/C 6�2E.X2/ � 3�4 (1.22)



36 1 Statistical Background

Fig. 1.12 Shown is the pdf f .x/ D 1=2, for �1 < x < 1 and 0 elsewhere

A. The graph for the pdf, f .x/ D 1=2, for �1 < x < 1 and 0 elsewhere, is shown
in Fig. 1.12. The first four moments are given by

E.X/ D
Z 1

�1
dx

x

2
D x2

4

ˇ
ˇ
ˇ
ˇ

1

�1
D 0

E.X2/ D
Z 1

�1
dx

x2

2
D x3

6

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

3

E.X3/ D
Z 1

�1
dx

x3

2
D x4

8

ˇ
ˇ
ˇ
ˇ

1

�1
D 0

E.X4/ D
Z 1

�1
dx

x4

2
D x5

10

ˇ
ˇ
ˇ
ˇ

1

�1
D 1

5
:

For the variance we find �2 D E.X2/� E.X/2 D 1=3. The kurtosis is then given
by

K D E
�
.X � �/4

	

�4
D

1
5
1
9

D 9

5
D 1:8:
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Fig. 1.13 Shown is the pdf f .x/ D 3.1� x2/=4, for �1 < x < 1 and 0 elsewhere

B. The graph of the pdf, f .x/ D 3.1 � x2/=4, for �1 < x < 1 and 0 elsewhere, is
shown in Fig. 1.13. The first four moments are then given by

E.X/ D
Z 1

�1
dx
3

4

�
x � x3

� D 3

4



x2

2
� x4

4

�1

�1
D 0

E.X2/ D
Z 1

�1
dx
3

4

�
x2 � x4

� D 3

4



x3

3
� x5

5

�1

�1
D 1

5

E.X3/ D
Z 1

�1
dx
3

4

�
x3 � x5

� D 3

4



x4

4
� x6

6

�1

�1
D 0

E.X4/ D
Z 1

�1
dx
3

4

�
x4 � x6

� D 3

4



x5

5
� x7

7

�1

�1
D 3

35
:

For the variance we find �2 D E.X2/� E.X/2 D 1=5. The kurtosis is then given
by

K D E
�
.X � �/4

	

�4
D

3
35
1
25

D 15

7
D 2:14:

Obviously, the kurtosis of the first probability distribution (K D 1:8) is smaller than
the kurtosis of the second probability distribution (K D 2:14).
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1.6 Conditional Probability and Marginal and Conditional
Distribution

Definition 1.5 Let X1 and X2 be two continuous random variables with joint
pdf f .x1; x2/ and marginal pdfs f .x1/ and f .x2/. Provided f .x1/ > 0, we define
the conditional pdf of the continuous random variable X2 as

f .x2jx1/ D f .x1; x2/

f .x1/
: (1.23)

Problem 1.43 Show that the conditional pdf (1.23) has the properties of a pdf!

Solution First we show that P.�1 < X2 < 1jX1 D x1/ D 1, i.e., that the
conditional probability for �1 < X2 < 1, given that X1 D x1, is equal to one. We
find

P.�1 < X2 < 1jX1 D x1/ D
Z 1

�1
dx2 f .x2jx1/ D

Z 1

�1
dx2

f .x1; x2/

f .x1/

D 1

f .x1/

Z 1

�1
dx2 f .x1; x2/ D 1

f .x1/
f .x1/ D 1;

where f .x1/ is the marginal pdf of f .x1; x2/. Secondly, since f .x1/ � 0 and
f .x1; x2/ � 0, it follows that f .x2jx1/ � 0.

Problem 1.44 Consider the joint pdf

f .x1; x2/ D
(
1
4
x1
�
1C 3x22

�
for 0 < x1 < 2; 0 < x2 < 1

0 elsewhere.

Show that
R

f .x1; x2/ dx1dx2 D 1. Find P Œ.X1;X2/ 2 A�, where

A D
�

f .x1; x2/j0 < x1 < 1;
1

4
< x2 <

1

2

�

:

Determine also f1.x1/; f2.x2/; f .x1jx2/, and P.1=4 < X1 < 1=2jX2 D 1=3/.

Solution First we show, that the above pdf is indeed a pdf,

Z 2

0

dx1

Z 1

0

dx2 f .x1; x2/ D 1

4

Z 2

0

dx1

Z 1

0

dx2 x1
�
1C 3x22

�

D 1

4

Z 2

0

dx1 x1

Z 1

0

dx2 C 3

4

Z 2

0

dx1 x1

Z 1

0

dx2 x22
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D 1

4



x21
2

ˇ
ˇ
ˇ
2

0
x2
ˇ
ˇ
ˇ
1

0

�

C 3

4



x21
2

ˇ
ˇ
ˇ
2

0

x32
3

ˇ
ˇ
ˇ
1

0

�

D 1

4
Œ2 � 1�C 3

4




2 � 1
3

�

D 1:

Next we calculate P Œ.X1;X2/ 2 A�, which can also be written as

P

�

0 < X1 < 1;
1

4
< X2 <

1

2

�

D 1

4

Z 1

0

dx1

Z 1=2

1=4

dx2 x1
�
1C 3x22

� D 23

512
:

The marginal pdfs for f1.x1/; and f2.x2/ are calculated by

f1.x1/ D
Z 1

0

dx2 f .x1; x2/ D 1

4

Z 1

0

dx2 x1
�
1C 3x22

� D x1
2

f2.x2/ D
Z 2

0

dx1 f .x1; x2/ D 1

4

Z 2

0

dx1 x1
�
1C 3x22

� D 1

2

�
1C 3x22

�
:

The conditional pdfs f .x1jx2/ and f .x2jx1/ are calculated by

f .x1jx2/ D f .x1; x2/

f2.x2/
D

1
4
x1
�
1C 3x22

�

1
2

�
1C 3x22

� D x1
2

f .x2jx1/ D f .x1; x2/

f1.x1/
D

1
4
x1
�
1C 3x22

�

x1
2

D 1

2

�
1C 3x22

�
:

Note that the conditional and marginal pdfs are identical, which means that the
stochastic variables X1 and X2 are stochastically independent (see Sect. 1.7) Lastly,
we calculate the conditional probability P.1=4 < X1 < 1=2jX2 D 1=3/, which can
be written as

P.1=4 < X1 < 1=2jX2 D 1=3/ D
Z 1=2

1=4

dx1 f .x1jx2/ D
Z 1=2

1=4

dx1
x1
2

D 3

64
:

Problem 1.45 Two random variables X1 and X2 have the joint pdf

f .x1; x2/ D
(

x1 C x2 for 0 < x1 < 1 and 0 < x2 < 1

0 elsewhere:

Find the conditional mean and variance of X2 given X1 D x1, and 0 < x1 < 1.

Solution The idea is as follows: First we calculate the marginal pdf f .x1/ in
order to calculate the conditional pdf of X2, which is given by Eq. (1.23). With the
conditional pdf of X2 we can then easily derive the conditional mean E ŒX2jx1�.
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• The marginal pdf of X1 is given by f .x1/ D R1
�1 f .x1; x2/ dx2, so that

f .x1/ D
Z 1

0

dx2 Œx1 C x2� D
(

x1 C 1
2

for 0 < x1 < 1

0 elsewhere:

• According to Eq. (1.23) the conditional pdf of X2 is then

f .x2jx1/ D
8
<

:

x1Cx2
x1C 1

2

for 0 < x1 < 1 and 0 < x2 < 1

0 elsewhere:

• The conditional mean of X2 given that X1 D x1 with 0 < x1 < 0 is then

E.X2jx1/ D
Z 1

�1
dx2 x2 f .x2jx1/ D

Z 1

0

dx2 x2
x1 C x2
x1 C 1

2

D 1

x1 C 1
2

Z 1

0

dx2
�
x1x2 C x22

	 D 1

3

3x1 C 2

2x1 C 1
:

Similarly, we find

E.X22jx1/ D
Z 1

�1
dx2 x22 f .x2jx1/ D

Z 1

0

dx2 x22
x1 C x2
x1 C 1

2

D 1

x1 C 1
2

Z 1

0

dx2
�
x1x

2
2 C x32

	 D 1

6

4x1 C 3

2x1 C 1
:

• The conditional variance is simply given by

�X2 D E.X22jx1/ � E.X2jx1/2 D 1

18

6x21 C 6x1 C 1

.2x1 C 1/2
:

Problem 1.46 Suppose the conditional pdf of X1 given X2 D x2 is

f .x1jx2/ D
8
<

:

c1
x1
x22

for 0 < x1 < x2 and 0 < x2 < 1

0 elsewhere

and the marginal pdf of X2 is

f .x2/ D
(

c2x42 for 0 < x2 < 1

0 elsewhere:
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Compute (A) the constants c1 and c2, (B) the joint pdf of X1 and X2, (C) the
probability P .1=4 < X1 < 1=2 j X2 D 5=8/ and (D) P .1=4 < X1 < 1=2/.

Solution

A. The constant of the marginal pdf of the random variable X2 can be calculated by

1
ŠD
Z 1

�1
dx2 f .x2/ D c2

Z 1

0

dx2 x42 D c2
5

H) c2 D 5:

The constant c1 is then calculated by (see also Problem 1.43, properties of a
conditional pdf)

1
ŠD
Z 1

�1
dx1 f .x1jx2/ D

Z x2

0

dx1 c1
x1
x22

D 1

2
c1 H) c1 D 2:

B. The joint probability is then

f .x1; x2/ D f .x2/f .x1jx2/ D
(
10x1x22 for 0 < x1 < x2 < 1

0 elsewhere.

C. For the probabilities we find

P .1=4 < X1 < 1=2 jX2 D 5=8/ D
Z 1

2

1
4

dx1 f .x1j5=8/

D 64

25

Z 1
2

1
4

dx1 2x1 D 12

25

D. and

P .1=4 < X1 < 1=2/ D
Z 1

2

1
4

dx1 f .x1/ D
Z 1

2

1
4

dx1

Z 1

x1

dx2 f .x1; x2/

D
Z 1

2

1
4

dx1

Z 1

x1

dx2 10x1x
2
2 D 449

1536
:

Problem 1.47 Suppose that the joint pdf of X1 and X2 is

f .x1; x2/ D
(

cx21x2 for x21 � x2 < 1

0 elsewhere.
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(A) Determine the value of the constant c and (B) evaluate the marginal pdfs f1.x1/
and f2.x2/. (C) Then calculate P.X1 � X2/ (Hint: sketch the region where f .x1; x2/ �
0.).

Solution First we note that the maximum value of the variable x21 is x2, i.e.,
max

�
x21
� D x2. Since x2 has to be smaller than 1 we find that x21 < 1, which limits

the variable x1 to the range �1 < x1 < 1. It follows that min
�
x21
� D 0, so that the

above pdf is defined in the (more precise) range 0 � x21 � x2 < 1. We could also
write

f .x1; x2/ D
(

cx21x2 for 0 � x21 � x2 < 1

0 elsewhere.

A closer inspection of the limits reveals the following two relations:

• For any given x2 with 0 � x2 < 1 we find that the variable x1 has to comply with
the limits 0 � x21 � x2 and, thus, �p

x2 � x1 � p
x2.

• For any given x1 with �1 < x1 < 1 we find that the variable x2 has to comply
with the limits x21 � x2 < 1.

A. First we calculate the constant c.

(i) Using the fact that the probability over the entire sample space has to be
equal to 1, we can write

1
ŠD
Z 1

�1
dx1

Z 1

�1
dx2 f .x1; x2/ D

Z 1

�1
dx1

Z 1

x21

dx2 f .x1; x2/

D c
Z 1

�1
dx1 x21

Z 1

x21

dx2 x2 D c

2

Z 1

�1
dx1 x21

�
1 � x41

� D c
4

21
:

We find for the constant c D 21=4.
(ii) Alternatively, we could also have written

1
ŠD
Z 1

�1
dx1

Z 1

�1
dx2 f .x1; x2/ D

Z 1

0

dx2

Z p
x2

�p
x2

dx1 f .x1; x2/

D c
Z 1

0

dx2 x2

Z p
x2

�p
x2

dx1 x21 D c

3

Z 1

0

dx2 x2
�
x31
	px2

�p
x2

D 2

3
c
Z 1

0

dx2 x5=22 D 2

3
c
2

7

h
x7=22

i1

0
D c

4

21
:
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Fig. 1.14 Shown is the area for which the pdf, given by Eq. (1.24), is defined (light and dark grey).
The dark grey area is the area for which P.X1 � X2/

The joint pdf is given by

f .x1; x2/ D
(
21
4

x21x2 for 0 � x21 � x2 < 1

0 elsewhere.
(1.24)

B. The marginal pdfs are then given by

f1.x1/ D
(
21
4

x21
R 1

x21
dx2 x2 D 21

8

�
x21 � x61

�
for � 1 < x1 < 1

0 elsewhere

f2.x2/ D
(
21
4

x2
Rp

x2
�p

x2
dx1 x21 D 21

6
x5=22 D 7

2
x5=22 for 0 � x2 < 1

0 elsewhere.

It can easily be shown, that
R

f .x1/dx1 D 1 D R
f .x2/dx2.

C. Lastly, we calculate P.X1 � X2/. Since 0 � x21 � x2 < 1, we need to determine
where x1 � x2. Figure 1.14 shows for which values the pdf is defined (light and
dark grey area). For P.X1 � X2/ the pdf is defined by the dark grey area only.
We calculate (see above case (i))

P.X1 � X2/ D
Z 1

0

dx1

Z x1

x21

dx2 f .x1; x2/:
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Here x2 runs from x21 to x1 instead of x21 � x2 � 1, since we are only interested
in the dark grey shaded area. With the joint pdf given by Eq. (1.24) we calculate

P.X1 � X2/ D 21

4

Z 1

0

dx1 x21

Z x1

x21

dx2 x2 D 21

8

Z 1

0

dx1
�
x41 � x61

� D 3

20
:

Alternatively, one could also calculate (see above case (ii))

P.X1 � X2/ D
Z 1

0

dx2

Z p
x2

x2

dx1 f .x1; x2/:

In this case x1 runs from x2 to
p

x2 and we find

P.X1 � X2/ D 21

4

Z 1

0

dx2 x2

Z p
x2

x2

dx1 x21 D 3

20
:

Problem 1.48 Let �.t1; t2/ D ln M.t1; t2/, where M.t1; t2/ is the moment-
generating function of X and Y. Show that (k D 1; 2)

@�.0; 0/

@tk
D �k;

@2�.0; 0/

@t2k
D �2k ;

@2�.0; 0/

@t1@t2
D Cov

yields the means, the variances, and the covariance of the two random variables.

Solution We repeat briefly that

M.0; 0/ D 1;
@M.0; 0/

@tk
D �k;

@2M.0; 0/

@t2k
�


@M.0; 0/

@tk

�2
D �2k ;

and that the covariance is defined as

Cov D @2M.0; 0/

@t1@2
� �1�2:

With that we can now easily derive

@�.t1; t2/

@tk
D 1

M.t1; t2/

@M.t1; t2/

@tk
;

so that

@�.0; 0/

@tk
D 1

M.0; 0/

@M.0; 0/

@tk
D �k:
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Secondly, we have

@2�.t1; t2/

@t2k
D 1

M.t1; t2/2

"
@2M.t1; t2/

@t2k
M.t1; t2/�

�
@M.t1; t2/

@tk

�2
#

;

so that

@2�.0; 0/

@t2k
D 1

M.0; 0/2

"
@2M.0; 0/

@t2k
M.0; 0/�

�
@M.0; 0/

@tk

�2
#

D �2k :

Lastly, we have

@2�.t1; t2/

@t1@t2
D @2 ln M.t1; t2/

@t1@t2
D @

@t1



@ ln M.t1; t2/

@t2

�

D @

@t1



1

M.t1; t2/

@M.t1; t2/

@t2

�

D 1

M.t1; t2/

@2M.t1; t2/

@t1@t2
� 1

M.t1; t2/2
@M.t1; t2/

@t1

@M.t1; t2/

@t2
:

From that it follows immediately that

1

M.0; 0/

@2M.0; 0/

@t1@t2
� 1

M.0; 0/2
@M.0; 0/

@t1

@M.0; 0/

@t2
D @2M.0; 0/

@t1@t2
� �1�2 D Cov :

Problem 1.49 Given the joint pdf of X1 and X2,

f .x1; x2/ D
(
21x21x

3
2 for 0 < x1 < x2 < 1

0 elsewhere,

find the conditional mean and variance of X1 given X2 D x2 with 0 < x2 < 1.

Solution In order to calculate the conditional pdf f .x1jx2/ D f .x1; x2/=f .x2/,
which is needed to calculate the conditional mean and variance, we calculate first
the marginal pdf f .x2/,

f .x2/ D
Z 1

�1
dx1 f .x1; x2/ D 21x32

Z x2

0

dx1 x21 D
(
7x62 for 0 < x2 < 1

0 elsewhere:

The conditional pdf is then simply

f .x1jx2/ D f .x1; x2/

f .x2/
D
8
<

:

3
x21
x32

for 0 < x1 < x2 < 1

0 elsewhere:
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The conditional mean is then calculated by

E.X1jx2/ D
Z 1

�1
dx1 x1f .x1jx2/ D 3

x32

Z x2

0

dx1 x31 D 3

4
x2

for 0 < x2 < 1. The second moment of X1 given X2 D x2 is then

E.X21jx2/ D
Z 1

�1
dx1 x21f .x1jx2/ D 3

x32

Z x2

0

dx1 x41 D 3

5
x22

for 0 < x2 < 1. The conditional variance is then

E
h
ŒX1 � E.X1jx2/�2

ˇ
ˇ
ˇ x2
i

D E.X21 jx2/ � E.X1jx2/2

D 3

5
x22 � 9

16
x22 D 3

80
x22:

Problem 1.50 Five cards are drawn at random without replacement from a deck
of 52 cards. The random variables X1, X2, and X3 denote the number of spades,
the number of hearts, and the number of diamonds that appear among the 5 cards
respectively. Determine the joint pdf of X1, X2, and X3. Find the marginal pdfs of
X1, X2, and X3. What is the joint conditional pdf of X2 and X3 given that X1 D 3?

Solution The joint pdf is given by

f .x1; x2; x3/ D
8
<

:

C13x1
C13x2

C13x3
C135�x1�x2�x3

C525
for x1;2;3 D 0; 1; : : : ; 5

0 elsewhere;

where we used the binomial coefficient (1.29), see also Problem 1.36. The marginal
pdfs are then given by

f .x1/ D C13
x1

C52
5

5�x1X

x2D0

5�x1�x2X

x3D0
C13

x2 C13
x3 C13

5�x1�x2�x3

f .x2/ D C13
x2

C52
5

5�x2X

x1D0

5�x1�x2X

x3D0
C13

x1
C13

x3
C13
5�x1�x2�x3

and

f .x3/ D C13
x3

C52
5

5�x3X

x1D0

5�x3�x1X

x2D0
C13

x1 C13
x2 C13

5�x1�x2�x3 :
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For the joint conditional pdf of X2 and X3 given that X1 D 3 we find

f .x2; x3jx1 D 3/ D f .x1 D 3; x2; x3/

f .x1 D 3/

D C13
x2 C13

x3 C13
2�x2�x3

P2
x2D0

P2�x2
x3D0 C13

x2 C13
x3 C13

2�x2�x3

:

Problem 1.51 Suppose that the joint pdf of X and Y is given by

f .x; y/ D
(
2 for 0 < x < y; 0 < y < 1

0 elsewhere.

Show that the conditional means are .1Cx/=2 for 0 < x < 1 and y=2 for 0 < y < 1,
and the correlation function of X and Y is � D 1=2. Show also that the variance of
the conditional distribution of Y given X D x is .1 � x/2=12 for 0 < x < 1, and that
the variance of the conditional distribution of X given Y D y is y2=12 for 0 < y < 1.

Solution A closer inspection reveals:

A. For any given X D x the variable Y complies with x < y < 1.
B. For any given Y D y the variable X complies with 0 < x < y.

• First we calculate the marginal pdfs:

f .x/ D
Z 1

�1
dy f .x; y/ D

Z 1

x
dy 2 D 2yj1x D 2 .1 � x/ for 0 < x < 1

f .y/ D
Z 1

�1
dx f .x; y/ D

Z y

0

dx 2 D 2xjy
0 D 2y for 0 < y < 1:

It can easily be shown, that
R

f .x/dx D 1 D R
f .y/dy. Also, the random variables

X1 and X2 are not stochastically independent, since f .x1; x2/ ¤ f .x1/f .x2/.
• Next we calculate the conditional pdfs:

f .xjy/ D f .x; y/

f .y/
D 2

2y
D 1

y
for x < y < 1 and 0 < x < 1

f .yjx/ D f .x; y/

f .x/
D 2

2 .1 � x/
D 1

.1 � x/
for 0 < x < y and 0 < y < 1:

• The conditional mean of X given Y D y is

E.Xjy/ D
Z 1

�1
dx xf .xjy/ D

Z y

0

dx
x

y
D 1

2y
x2
ˇ
ˇ
ˇ
y

0
D y

2
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for 0 < y < 1. The conditional mean of Y given X D x is

E.Yjx/ D
Z 1

�1
dx yf .yjx/ D

Z 1

x
dy

y

1 � x

D 1

1 � x

y2

2

ˇ
ˇ
ˇ
1

x
D 1 � x2

2.1� x/
D 1C x

2

for 0 < x < 1.
• The conditional variances can be calculated by

�xjy D E
�
ŒX � E.Xjy/�2 jy



D E.X2jy/� E.Xjy/2; (1.25)

so that

�xjy D E.X2jy/� E.Xjy/2 D
Z y

0

dx
x2

y
� y2

4
D x3

3y

ˇ
ˇ
ˇ
y

0
� y2

4
D y2

3
� y2

4
D y2

12

for 0 < y < 1 and

�yjx D E.Y2jx/� E.Yjx/2 D
Z 1

x
dy

y2

1 � x
� .1C x/2

4

D y3

3.1� x/

ˇ
ˇ
ˇ
1

x
� .1C x/2

4
D 1� x3

3.1 � x/
� .1C x/2

4

D 1C x C x2

3
� 1C 2x C x2

4
D 4C 4x C 4x2 � 3 � 6x � 3x2

12

D 1 � 2x C x2

12
D .1 � x/2

12
;

where we used 1 � x3 D .1 � x/.1C x C x2/.
• To calculate the correlation coefficient (function), �, which is defined as

� D E
�
.X � �x/.Y � �y/

	

�x�y
D E.XY/� �x�y

�x�y
; (1.26)

we need to determine �x; �y, and E.XY/, as well as E.X2/ and E.Y2/. We start
with

�x D E.X/ D
Z 1

�1
dx
Z 1

�1
dy xf .x; y/

D
Z 1

0

dy
Z y

0

dx 2x D
Z 1

0

dy y2 D 1

3
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and

�y D E.Y/ D
Z 1

�1
dx
Z 1

�1
dy yf .x; y/

D
Z 1

0

dx
Z 1

x
dy 2y D

Z 1

0

dx .1 � x2/ D



x � x3

3

�1

0

D 2

3
:

The expected value of XY is

E.XY/ D
Z 1

0

dy
Z y

0

2xy D
Z 1

0

dy y3 D 1

4
:

For the variances we need to calculate

E.X2/ D
Z 1

0

dy
Z y

0

dx 2x2 D 2

3

Z 1

0

dy y3 D 1

6

E.Y2/ D
Z 1

0

dx
Z 1

x
dy 2y2 D 2

3

Z 1

0

dy .1� x3/ D 1

2
:

The variances are then calculated by

�2x D E.X2/ � E.X/2 D 1

6
� 1

9
D 1

18

�2y D E.Y2/ � E.Y/2 D 1

2
� 4

9
D 1

18
:

Finally, we find for the correlation coefficient (function),

� D E.XY/� �x�y

�x�y
D 18



1

4
� 1

3
� 2
3

�

D 18

36
D 1

2
:

Problem 1.52 Let f .t/ and F.t/ be the pdf and the distribution function of the
random variable T. The conditional pdf of T given T > t0, t0 a fixed time, is defined
by f .tjT > t0/ D f .t/= Œ1 � F.t0/� ; t > t0, 0 elsewhere. This kind of pdf is used
in survival analysis, i.e., problems of time until death, given survival until time t0.
Show that f .tjT > t0/ is a pdf. Let f .t/ D e�t, 0 < t < 1, 0 elsewhere, and compute
P.T > 2jT > 1/.

Solution Since there are no negative times (t > 0), we find for the distribution
function F.t0/ D R t0

0
dt f .t/ and for the pdf f .t/

1 D
Z 1

0

dt f .t/ D
Z t0

0

dt f .t/C
Z 1

t0

dt f .t/ D F.t0/C
Z 1

t0

dt f .t/;
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from which it follows that
Z 1

t0

dt f .t/ D 1 � F.t0/: (1.27)

For the conditional pdf we find

Z 1

0

dt f .tjT > t0/ D 1

1 � F.t0/

Z 1

t0

dt f .t/ D 1;

where we used Eq. (1.27) in the last step. With f .t/ D e�t, 0 < t < 1, 0 elsewhere,
we find from the definition of the distribution function that F.t0 D 1/ D 1 � e�1.
The probability of P.T > 2jT > 1/ is then given by

P.T > 2jT > 1/ D
Z 1

2

dt f .tjT > 1/ D 1

1 � F.1/

Z 1

2

dt f .t/

D e
Z 1

2

dt e�t D e�1:

1.7 Stochastic Independence

Definition 1.6 Let the random variables X1 and X2 have the joint pdf f .x1; x2/
and marginal pdfs f .x1/ and f .x2/. The random variables X1 and X2 are
stochastically independent if and only if f .x1; x2/ D f .x1/f .x2/. Otherwise
they are stochastically dependent.

Problem 1.53 Let the joint pdf of X1 and X2 be

f .x1; x2/ D
(

x1 C x2 for 0 < x1 < 1; and 0 < x2 < 1

0 elsewhere.

Show that the random variables X1 and X2 are stochastically dependent.

Solution The marginal pdfs are given by

f .x1/ D
Z 1

�1
dx2 f .x1; x2/ D

Z 1

0

dx2 .x1 C x2/ D x1 C 1

2

f .x2/ D
Z 1

�1
dx1 f .x1; x2/ D

Z 1

0

dx1 .x1 C x2/ D x2 C 1

2
:
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Obviously, f .x1; x2/ ¤ f .x1/f .x2/, thus the two random variables X1 and X2 are
stochastically dependent.

Problem 1.54 Show that the random variables X and Y with joint pdf

f .x; y/ D
(
2e�x�y for 0 < x < y; 0 < y < 1
0 elsewhere

are stochastically dependent.

Solution The marginal pdfs are given by

f .x/ D
Z 1

x
dy 2e�x�y D 2e�2x 0 < x < 1

f .y/ D
Z y

0

dx 2e�x�y D 2e�y Œ1 � e�y� 0 < y < 1

Obviously, f .x; y/ ¤ f .x/f .y/, which means that the random variables X and Y are
stochastically dependent.

Problem 1.55 Consider the joint pdf of two random variables X and Y,

f .x; y/

(
x.1C3y2/

4
for 0 < x < 2; 0 < y < 1

0 elsewhere.

Are the random variables X and Y stochastically independent? Compute f .xjy/ and
hence P.1=4 < X < 1=2jY D 3/.

Solution The marginal pdfs are given by

f .x/ D
Z 1

0

dy
x.1C 3y2/

4
D x

4

Z 1

0

dy .1C 3y2/ D x

4

�
y C y3

	1
0

D x

2

for 0 < x < 2, and

f .y/ D
Z 2

0

dx
x.1C 3y2/

4
D .1C 3y2/

4

Z 2

0

dx x D .1C 3y2/

2

for 0 < y < 1. Obviously, f .x; y/ D f .x/f .y/, thus the two random variables are
stochastically independent. The conditional pdf for the random variable X given
Y D y is

f .xjy/ D f .x; y/

f .y/
D x.1C 3y2/

4

2

.1C 3y2/
D x

2
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for 0 < x < 1. Obviously, the conditional pdf does not depend on the variable y,
thus

P.1=4 < X < 1=2jY D 3/ D
Z 1=2

1=4

dx f .xjy D 3/ D



x2

4

�1=2

1=4

D 3

64
:

Problem 1.56 The random variables X and Y have joint pdf

f .x; y/ D
(
4x.1 � y/ for 0 < x < 1; 0 < y < 1

0 elsewhere.

Find P.0 < X < 1=3; 0 < Y < 1=3/.

Solution The probability is easily calculated by

P.0 < X < 1=3; 0 < Y < 1=3/ D
Z 1=3

0

dx
Z 1=3

0

dy 4x.1� y/ D 5

81
:

Problem 1.57 Let X1;X2, and X3 be three stochastically independent random
variables, each with pdf

f .x/ D
(

e�x for 0 < x

0 elsewhere.

Find P.X1 < 2; 1 < X2 < 3;X3 > 2/.

Solution Since the pdfs of each variable are stochastically independent, we find
easily the joint pdf as

f .x1; x2; x3/ D f .x1/f .x2/f .x3/ D e�x1�x2�x3 :

The probability is then given by

P.X1 < 2; 1 < X2 < 3;X3 > 2/

D
Z 2

0

dx1

Z 3

1

dx2

Z 1

2

dx3 e�x1�x2�x3

D
Z 2

0

dx1e
�x1

Z 3

1

dx2e
�x2

Z 1

2

dx3 e�x3 D



1 � 1

e2

� 

1

e
� 1

e3

�
1

e2

	 0:037:



1.7 Stochastic Independence 53

Problem 1.58 Show that the random variables X and Y with joint pdf

f .x; y/

(
e�x�y for 0 < x < 1; 0 < y < 1
0 elsewhere

are stochastically independent and that

E
�
et.XCY/

� D .1 � t/�2; t < 1:

Solution The marginal pdfs are

f .x/ D
Z 1

0

dy e�x�y D e�x 0 < x < 1

f .y/ D
Z 1

0

dx e�x�y D e�y 0 < y < 1:

Since f .x; y/ D f .x/f .y/ both variables are stochastically independent. We further
find

E
�
et.XCY/

� D
Z 1

�1
dx
Z 1

�1
dy et.xCy/f .x; y/ D

Z 1

0

dx
Z 1

0

dy et.xCy/e�x�y

D
Z 1

0

dx e�x.1�t/
Z 1

0

dy e�y.1�t/ D 1

.1 � t/2
for t < 1:

Note that the integration converges only for t < 1.

Problem 1.59 Show that the random variables X and Y with joint pdf

f .x; y/ D
(
12xy.1� y/ for 0 < x < 1; 0 < y < 1

0 elsewhere

are stochastically independent.

Solution The marginal pdfs are

f .x/ D
Z 1

0

dy 12xy.1� y/ D 2x 0 < x < 1

f .y/ D
Z 1

0

dx 12xy.1� y/ D 6y.1� y/ 0 < y < 1:

Obviously, f .x; y/ D f .x/f .y/, which means that the random variables X and Y are
stochastically independent.
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1.8 Particular Distributions

1.8.1 The Binomial Distribution

The pdf of the binomial distribution is given by

f .x/ D
�

n
x

�

px .1 � p/n�x ; (1.28)

where the binomial coefficient describes the number of combinations (see also
Problem 1.36) and is given by

Cn
x D

�
n
x

�

D nŠ

xŠ.n � x/Š
: (1.29)

The mean and variance are given by � D np and �2 D np.1 � p/.
The binomial distribution is commonly denoted by B.n; p/. The moment-
generating function of the binomial distribution is defined by

M.t/ D �
.1 � p/C pet

	n
: (1.30)

The binomial theorem can be written as

.x C y/n D
nX

kD0

�
n
k

�

xn�kyk: (1.31)

Problem 1.60 If the moment-generating function of a random variable X is

M.t/ D
�
1

3
C 2

3
et

�5
;

find P.X D 2 or 3/.

Solution By comparing the moment-generating function with the defini-
tion (1.30) above we find n D 5 and p D 2=3. The binomial pdf is then given
by

f .x/ D
�
5

x

��
2

3

�x �
1

3

�5�x

:
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The first factor is the binomial coefficient (1.29). The probability of P.X D
2 or 3/ D P.2/C P.3/ is given by

P.2/C P.3/ D
X

xD2;3

�
5

x

��
2

3

�x �
1

3

�5�x

D 40

81
:

Problem 1.61 The moment-generating function of a random variable X is

M.t/ D
�
2

3
C 1

3
et

�9
:

Show that

P.�� 2� < X < �C 2�/ D
5X

xD1

�
9

x

��
1

3

�x �
2

3

�9�x

:

Solution If we compare the moment-generating function above with the def-
inition given by Eq. (1.30) we find p D 1=3 and n D 9. With � D np and
�2 D np.1�p/we find � D 3 and �2 D 2, so that �C2� 	 5:8 and ��2� 	 0:2.
Since the binomial distribution is discrete we find

P.�� 2� < X < �C 2�/ D
5X

xD1

�
9

x

��
1

3

�x �
2

3

�9�x

:

Problem 1.62 The probability that a patient recovers from heart surgery is 0:4. If
15 people have had surgery, what is the probability that (A) at least 10 survive (B)
from 3 to 8 survive (C) exactly 5 survive? (D) Using Chebyshev’s inequality, find
and interpret the interval �˙ 2� .

Solution The general form of the binomial distribution is given by Eq. (1.28),
where the binomial coefficient is defined by Eq. (1.29). We use the following
notation: The probability of surviving is p D 0:4. Consequently, the probability
of dying is 1 � p D 0:6. The experiment comprises n D 15 people, so that the pdf
can be written as

f .x/ D
�
15

x

�

.0:4/x .0:6/15�x : (1.32)

Figure 1.15 shows this particular distribution. We further find:

A. The probability that at least 10 people survive is given by

P.X � 10/ D
15X

xD10
f .x/ D 0:0338;
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2 4 6 8 10 12 14
x

0.05

0.10

0.15

0.20

f x

Fig. 1.15 Shown is the binomial distribution as given in Eq. (1.32)

which is the sum of the probabilities that exactly 10; 11; 12; 13; 14, and 15
people survive.

B. The probability that 3–8 people survive is given by

P.3 � X � 8/ D
8X

3

f .x/ D 0:8778;

the sum of the probabilities that exactly 3; 4; 5; 6; 7; and 8 people survive.
C. The probability that exactly 5 people survive is given by

P.X D 5/ D f .5/ D 0:1859:

D. Next, we find � D np D 15 � 0:4 D 6 and �2 D np.1 � p/ D 36=10, so that
� � 2� D 6 � 12=

p
10 D 2:2 and � C 2� D 6 C 12=

p
10 D 9:8. With

Chebyshev’s inequality, see Eq. (1.20) from Problem 1.35, we find with n D 2

P.�� n� < X < �C n�/ � 1 � 1

n2

P .3 � X � 9/ � 3

4
:

The probability that between 3 and 9 people survive is at least 3=4. In fact the
exact probability is

P .3 � X � 9/ D
9X

3

f .x/ D 0:9391:



1.8 Particular Distributions 57

Problem 1.63 If the random variable X has a binomial distribution, B.n; p/, with
parameters n and p, show that

E

�
X

n

�

D p and E

"�
X

n
� p

�2
#

D p.1 � p/

n
:

Solution We remember that

E.X/ D � D np E.X2/ D np C n.n � 1/p2:

Therefore, we find

E

�
X

n

�

D 1

n
E.X/ D np

n
D p

and

E

"�
X

n
� p

�2
#

D E

�
X2

n2
� 2p

n
X C p2

�

D 1

n2
E.X2/ � 2p

n
E.X/C p2

D np C n.n � 1/p2

n2
� 2p2n

n
C p2

D np C n2p2 � np2

n2
� p2 D p.1 � p/

n
:

1.8.2 The Poisson Distribution

The Poisson distribution is given by

f .x/ D pxe�p

xŠ
: (1.33)

The mean and variance are given by p D � D �2 > 0. The general form of
the moment-generating function for a Poisson distribution is

M.t/ D
X

x

etx f .x/ D exp
�
p.et � 1/

	
: (1.34)
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Problem 1.64 If the random variable X has a Poisson distribution such that P.X D
1/ D P.X D 2/, find P.X D 4/.

Solution The probability of P.X D 1/ is given by f .1/ and the probability of
P.X D 2/ is given by f .2/. Since P.X D 1/ D P.X D 2/, we calculate

f .1/ D f .2/ H) p1e�p

1Š
D p2e�p

2Š
;

which leads to p D 2. The Poisson distribution for the random variable X is then
given by

f .x/ D 2xe�2

xŠ
:

The probability of P.X D 4/ is then

P.X D 4/ D f .4/ D 24e�2

4Š
D 2

3
e�2 	 0:09:

Problem 1.65 Given that M.t/ D exp Œ4.et � 1/� is the moment-generating func-
tion of a random variable X, show that P.�� 2� < X < �C �/ D 0:931.

Solution By comparing M.t/ D exp Œ4.et � 1/� with the general form (1.34) we
find p D 4. Since the mean and the variance for a Poisson distribution are given by
� D �2 D p, we find immediately

P.� � 2� < X < �C 2�/ D P.0 < X < 8/ D e�4
7X

xD1

4x

xŠ
	 0:931:

Note that the random variable X is larger than 0 but smaller than 8, i.e., the sum
extends from 1 to 7.

Problem 1.66 Suppose that during a given rush hour Wednesday, the number of
accidents on a certain stretch of highway has a Poisson distribution with mean 0:7.
What is the probability that there will be at least three accidents on that stretch of
highway at rush hour on Wednesday?

Solution The Poisson distribution is given by Eq. (1.33), where the mean and the
variance corresponds to p, i.e., p D � D �2. The Poisson distribution with mean
� D 0:7 can, therefore, be written as

f .x/ D 0:7xe�0:7

xŠ
;
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where x denotes the number of accidents. Since P.X � 3/ D 1� P.X < 3/, we find

P.X � 3/ D 1 �
2X

0

f .x/ D 1 �


0:70e�0:7

0Š
C 0:71e�0:7

1Š
C 0:72e�0:7

2Š

�

D 1 � Œ0:4966C 0:3476C 0:1216� D 1 � 0:9656

D 0:0341:

There is a 3:4% probability that at least three accidents occur on that stretch of
highway.

Problem 1.67 Compute the measures of skewness and kurtosis of the Poisson
distribution with mean �.

Solution The skewness and kurtosis are given by

S D EŒ.X � �/3�
�3

K D EŒ.X � �/4�

�4
(1.35)

where the third moment is given by Eq. (1.21) and the fourth moment by Eq. (1.22).
We know that the mean and the variance for the Poisson distribution is given by
p D � D �2, so that the third and fourth moment can also be written as

EŒ.X � p/3� D EŒX3� � 3pEŒX2�C 2p3

EŒ.X � p/4� D EŒX4� � 4pEŒX3�C 6p2EŒX2� � 3p4:

The moment-generating function for the Poisson distribution is given by Eq. (1.34).
The first four derivatives are

M0.t/ D petM.t/

M00.t/ D petM.t/C p2e2tM.t/

M000.t/ D petM.t/C 3p2e2tM.t/C p3e3tM.t/

M4.t/ D petM.t/C 7p2e2tM.t/C 6p3e3tM.t/C p4e4tM.t/:

With M.t D 0/ D 1 the expectations are then given by

EŒX� D M0.t D 0/ D p

EŒX2� D M00.t D 0/ D p C p2

EŒX3� D M000.t D 0/ D p C 3p2 C p3

EŒX4� D M4.t D 0/ D p C 7p2 C 6p3 C p4:
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The third and fourth moment is then

EŒ.X � p/3� D p

EŒ.X � p/4� D p C 3p2:

The skewness and kurtosis are then given by

S D p

p3=2
D 1p

p
K D p C 3p2

p2
D 1

p
C 3:

Problem 1.68 Suppose the random variables X and Y have the joint pdf

f .x; y/ D
(

e�2

xŠ.y�x/Š for y D 0; 1; 2; 3; : : : I and x D 0; 1; 2; : : : ; y

0 elsewhere.

Find the moment-generating function M.t1; t2/ of the joint pdf. Compute the means,
variances, and correlation coefficient of X and Y. Determine the conditional mean
E.Xjy/.

Solution The moment-generating function is given by

M.t1; t2/ D
1X

yD0

1X

xD0
ext1eyt2 f .x; y/ D

1X

yD0

yX

xD0
ext1eyt2

e�2

xŠ.y � x/Š
:

Note that the sum over the variable x extends from 0 to y and not to infinity (compare
with the pdf)! Multiplying this expression by yŠ=yŠ we find

M.t1; t2/ D e�2
1X

yD0

eyt2

yŠ

yX

xD0

yŠ

xŠ.y � x/Š
ext1 D e�2

1X

yD0

eyt2

yŠ

yX

xD0

�
y
x

�

ext1 ;

where we used the definition of the binomial coefficient (1.29). According to the
binomial theorem (1.31) the summation over x yields .1C et1 /y and we obtain

M.t1; t2/ D e�2
1X

yD0

eyt2

yŠ

�
1C et1

�y D e�2
1X

yD0

�
et2 C et1Ct2

	y

yŠ
:

With the series for the exponential function we obtain the moment-generating
function

M.t1; t2/ D e.e
t2Cet1Ct2�2/:
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The means of the random variables X and Y are given by the first derivation with
respect to t1 and t2 respectively. For the derivations we find therefore

@M.t1; t2/

@t1
D e.t1Ct2/e.e

t2Cet1Ct2�2/ ) �x D @M.0; 0/

@t1
D 1

and

@M.t1; t2/

@t2
D
h
et2 C e.t1Ct2/

i
e.e

t2Cet1Ct2�2/ ) �y D @M.0; 0/

@t2
D 2:

For the variance we need to calculate the second derivation. With �x D 1 we obtain

@2M.t1; t2/

@t21
D
h
1C e.t1Ct2/

i
e.t1Ct2/e.e

t2Cet1Ct2�2/

) �2x D @2M.0; 0/

@t21
� �2x D 2 � 1 D 1

and with �y D 2

@2M.t1; t2/

@t22
D
h
1C

�
et2 C e.t1Ct2/


i �
et2 C e.t1Ct2/



e.e

t2Cet1Ct2�2/

) �2y D @2M.0; 0/

@t22
� �2y D 6 � 4 D 2:

For the correlation coefficient we calculate first

@2M.t1; t2/

@t1@t2
D
h
1C

�
et2 C e.t1Ct2/


i
e.t1Ct2/e.e

t2Cet1Ct2�2/

) @2M.0; 0/

@t1@t2
D E.XY/ D 3:

The correlation coefficient is then given by (compare with Eq. (1.26) in Prob-
lem 1.51)

� D E.XY/� �x�y

�x�y
D 3 � 1 � 2p

2
D 1p

2
:
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For the conditional mean E.Xjy/we need to calculate first the conditional pdf f .xjy/,
which is given by f .xjy/ D f .x; y/=f .y/, where the marginal pdf of Y is given by
f .y/ D Py

xD0 f .x; y/

f .y/ D
yX

xD0

e�2

xŠ.y � x/Š
D e�2

yŠ

yX

xD0

yŠ

xŠ.y � x/Š
D e�2

yŠ

yX

xD0

�
y
x

�

D e�22y

yŠ
;

where we again multiplied by yŠ=yŠ and where we also used the fact that

yX

xD0

�
y
x

�

D 2y:

This can easily be verified by using the binomial theorem (1.31). The conditional
pdf is then given by

f .xjy/ D f .x; y/

f .y/
D e�2

xŠ.y � x/Š

yŠ

e�22y
D 2�y yŠ

xŠ.y � x/Š
:

The conditional mean is then calculated by

E.Xjy/ D
yX

xD0
xf .xjy/ D

yX

xD0
x2�y yŠ

xŠ.y � x/Š
:

With the binomial theorem (1.31) we find

E.Xjy/ D 2�y
yX

xD0
x

�
y
x

�

D 2�yy2y�1 D y

2
;

where we used
Pn

kD0 k

�
n
k

�

D n2n�1.

1.8.3 The Normal or Gaussian Distribution

The Gaussian distribution is given by

f .x/ D 1

�
p
2�

e� .x��/2

2�2 : (1.36)

(continued)
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and commonly denoted by n.�; �2/. The moment-generating function is
given by

M.t/ D exp

�

�t C �2t2

2

�

: (1.37)

As a special case, consider the probability

P.a < X < b/ D N

�
b � �

�

�

� N
�a � �

�



; (1.38)

where N.x/ is given by the integral

N.x/ D 1p
2�

Z x

�1
e�y2=2dy; (1.39)

which is based on the distribution n.0; 1/, i.e., a normal distribution with zero
mean and a variance of 1.

Problem 1.69 If Eq. (1.39) holds, show that N.�x/ D 1 � N.x/.

Solution From the definition of the probability distribution function we know
that

N.�x/ D 1p
2�

Z �x

�1
e�y2=2dy: (1.40)

We consider now N.x/ with the substitution z D �y with dz D �dy and obtain

N.x/ D � 1p
2�

Z �x

1
e�z2=2dz D 1p

2�

Z 1

�x
e�z2=2dz: (1.41)

From the definition of the pdf we know that

1 D 1p
2�

Z 1

�1
e�y2=2dy D 1p

2�

Z �x

�1
e�y2=2dy C 1p

2�

Z 1

�x
e�y2=2dy

D N.�x/C N.x/; (1.42)

where we substituted the results from Eqs. (1.40) and (1.41). It follows that N.�x/ D
1 � N.x/.
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Problem 1.70 If X is n.75; 100/, find P.X < 60/ and P.70 < X < 100/.

Solution We can immediately deduce that � D 75 and �2 D 100. The
distribution function is then given by

f .x/ D 1

10
p
2�

e� .x�75/2

200 :

For the probabilities we obtain

P.X < 60/ D
Z 60

�1
f .x/ dx D 0:067

P.70 < X < 100/ D
Z 100

70

f .x/ dx D 0:69:

Problem 1.71 If X is n.�; �2/, find a so that P.�a < .X � �/=� < a/ D 0:9.

Solution From definition (1.38) we know that

P

�

�a <
X � �
�

< a

�

D P .�� a� < X < �C a�/

D N.a/� N.�a/

D 2N.a/� 1;

where we used N.�x/ D 1 � N.x/. Since the probability is P.�a < .X � �/=� <

a/ D 0:9 we find N.a/ D 0:95, so that according to Eq. (1.39),

N.a/ D 1p
2�

Z a

�1
e�y2=2dy D 1

2
C 1

2
erf

�
ap
2

�
ŠD 0:95:

The error function is solved numerically and we find a D 1:645.

Problem 1.72 If X is n.�; �2/, show that E.jX � �j/ D �
p
2=� .

Solution The expectation of E.jX � �j/ is given by

E.jX � �j/ D 1

�
p
2�

Z 1

�1
jx � �je� .x��/2

2�2 dx:

The integral has to be split up, where x < � in the first and x > � in the second
integral, so that

E.jX � �j/ D 1

�
p
2�


Z �

�1
.�� x/e� .x��/2

2�2 dx C
Z 1

�

.x � �/e� .x��/2

2�2 dx

�

:
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In the first integral we substitute z D .� � x/=� and in the second integral we
substitute z D .x � �/=� . We obtain

E.jX � �j/ D �p
2�




�
Z 0

1
ze� z2

2 dz C
Z 1

0

ze� z2
2 dz

�

:

By swapping the limits of the first integral it follows with
R1
0

z exp
��z2=2

�
dz D 1

that

E.jX � �j/ D 2�p
2�

Z 1

0

ze� z2
2 dz D

r
2

�
�:

Problem 1.73 Show that the pdf n.�; �2/ has points of inflection at xi D �˙ � .

Solution For inflection points we have to show as a necessary condition that
d2f .x/=dx2 D 0. Thus,

f .x/ D 1

�
p
2�

e� .x��/2

2�2

d f .x/

dx
D � 1

�3
p
2�
.x � �/e� .x��/2

2�2

d2 f .x/

dx2
D 1

�3
p
2�




�1C .x � �/2

�2

�

e� .x��/2

2�2
ŠD 0:

We consider only the term in square brackets and obtain

.x � �/2 D �2 H) x2 � 2�x C �2 � �2 D 0:

This quadratic equation can easily be solved and we obtain two solutions xi D �˙� .
The sufficient condition requires d3f .x/=dx3 ¤ 0 at the points of inflection, so that

d3 f .x/

dx3
D � 1

�5
p
2�

.x � �/




�3C .x � �/2
�2

�

e� .x��/2

2�2 :

At the point of inflection we have

d3 f .x/

dx3

ˇ
ˇ
ˇ
xi

D ˙ 2

�4
p
2�

e� 1
2 ¤ 0;

since � ¤ 0 per definition. If � D 0 the distribution function f .x/ is a delta
distribution (see Problem 1.77) and the consideration here is obsolete.
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Problem 1.74 Suppose a random variable X has the pdf

f .x/ D
(

2p
2�

e�x2=2 for 0 < x < 1
0 elsewhere.

Find the mean and the variance of X.

Solution The mean is given by

� D E.X/ D 2p
2�

Z 1

0

dx xe�x2=2 D
r
2

�
;

since
R1
0

dx x exp
��x2=2

� D 1. The variance is given by

�2 D E.X2/ � �2 D 2p
2�

Z 1

0

dx x2e�x2=2 � 2

�
: (1.43)

Consider an arbitrary random variable with the Gaussian pdf n.0; 1/, from which we
know that the mean is zero and the variance is one. The pdf of that random variable
can be found as

f .x/ D 1p
2�

e� x2
2 :

Since the mean is zero (� D 0), the expectation for X2 is equal to the variance
� D 1 and therefore

1
ŠD �2 D E.X2/ D 1p

2�

Z 1

�1
dx x2e� x2

2 D 2p
2�

Z 1

0

dx x2e� x2
2 ;

since the integrand is an even function. If we compare this result with Eq. (1.43) we
find immediately

�2 D E.X2/ � �2 D 1 � 2

�
:

Problem 1.75 Let X1 and X2 be two stochastically independent normally dis-
tributed random variables with means �1 and �2 and variances �1 and �2. Show
that X1 C X2 is normally distributed with mean .�1 C �2/ and variance �21 C �22 .
(Hint: use the uniqueness of the moment-generating function.)
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Solution The moment-generating functions for the normally distributed random
variables X1 and X2 can be written as

MX1 .t/ D E
�
ex1t
	 D exp

 

�x1 t C �2x1 t
2

2

!

MX2 .t/ D E
�
ex2t
	 D exp

 

�x2 t C �2x2 t
2

2

!

:

Let’s introduce a third moment-generating function for the normally distributed
random variable X1 C X2, with mean �x1Cx2 and variance �x1Cx2 ,

MX1CX2.t/ D E
h
e.x1Cx2/t

i
D E

�
ex1tex2t

	 D exp

 

�x1Cx2 t C �2x1Cx2
t2

2

!

:

Since the random variables X1 and X2 are stochastically independent, we find for the
expectation

E
�
ex1tex2t

	 D E
�
ex1t
	 � E

�
ex2t
	
:

This means, that the moment-generating function for the random variable X1 C X2
can also be written as

MX1CX2 .t/ D MX1 .t/ � MX2 .t/

D exp

 

�x1 t C �2x1 t
2

2

!

� exp

 

�x2 t C �2x2 t
2

2

!

D exp

�

.�x1 C �x2 / t C �
�2x1 C �2x2

� t2

2

�

:

Obviously, MX1CX2 .t/ is the moment-generating function of a normal distribution.
Thus, the new random variable X1 C X2 is also normally distributed with mean and
variance given by

�x1Cx2 D �x1 C �x2

�x1Cx2 D �2x1 C �2x2 :

Problem 1.76 Compute P.1 < X2 < 9/ if X is n.1; 4/.

Solution From n.1; 4/ we deduce that � D 1 and � D 2. It is

P.1 < X2 < 9/

D P.1 < X < 3/C P.�3 < X < �1/
D P.X < 3/� P.X < 1/C P.X < �1/� P.X < �3/
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D P

�
X � �

�
<
3 � �
�

�

� P

�
X � �

�
<
1 � �
�

�

CP

�
X � �

�
<

�1 � �
�

�

� P

�
X � �

�
<

�3 � �
�

�

D N

�
3 � �
�

�

� N

�
1 � �

�

�

C N

��1 � �
�

�

� N

��3 � �
�

�

:

By substituting � D 1 and � D 2 we obtain

P.1 < X2 < 9/ D N

�
3 � 1

2

�

� N

�
1� 1

2

�

C N

��1 � 1

2

�

� N

��3 � 1

2

�

D N .1/� N .0/C N .�1/� N .�2/
D 0:8413� 0:5C 0:1587� 0:0228

D 0:4772;

where the values for the probability distribution were taken from tables.

Problem 1.77 Suppose the random variable X is normally distributed with
n.�; �2/. What will the distribution be if �2 D 0?

Solution The Gaussian pdf is given by

f .x/ D 1

�
p
2�

e� .x��/2

2�2 :

The limit for � ! 0 yields the delta distribution,

lim
�!0

f .x/ D lim
�!0

1

�
p
2�

e� .x��/2

2�2 D ı.x � �/;

with F.X/ D 1 for x � � and F.X/ D 0 for x < �.

1.9 The Central Limit Theorem

Suppose that Xi, with i D 1; 2; 3; : : : ; n is a random sample from a distribution
that has mean � and variance �2. Then the random variable

(continued)
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Yn D
Pn

iD1 Xi � n�p
n�

D p
n

NXn � �
�

(1.44)

has a limiting distribution that is normal with mean 0 and variance 1.

Problem 1.78 Compute an approximate probability that the mean NXn of a random
sample of size 15 from a distribution having pdf

f .x/ D
(
3x2 for 0 < x < 1

0 elsewhere

is between 3=5 and 4=5.

Solution First, we calculate the mean and variance of the pdf,

� D E.X/ D
Z 1

0

dx 3x3 D 3

4

�2 D E.X2/ � �2 D
Z 1

0

dx 3x4 � 9

16
D 3

5
� 9

16
D 3

80
:

Now we search for an approximate probability that the mean NXn of a random sample
of size n D 15 is between 3=5 and 4=5. In other words, we search for the probability
P.3=5 < NXn < 4=5/. In order to do so we introduce the new variable Yn, given by
Eq. (1.44), so that the expression for our probability transforms as

P

�
3

5
< NX < 4

5

�

D P


p
n.3=5� �/

�
<

p
n. NX � �/
�

<

p
n.4=5� �/

�

�

:

Basically, we subtracted the mean � from each parameter in the expression and
multiplied the results by

p
n=� . Obviously, the parameter in the middle corresponds

to the new variable Yn. Substituting now the mean and variance we obtain

P

�
3

5
< NX < 4

5

�

D P

"p
15.3=5� 3=4/
p
3=80

< Yn <

p
15.4=5� 3=4/
p
3=80

#

:

Since the new random variable Yn is normally distributed with � D 0 and �2 D 1

we can use the Eq. (1.38) and obtain

P

�
3

5
< NX < 4

5

�

D P .�3 < Yn < 1/ D N.1/� N.�3/ D 0:84;

where the values for N.1/ and N.�3/ were taken from tables.
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Problem 1.79 Let Y be a binomial distribution B.72; 1=3/. Approximate P.22 �
Y � 28/.

Solution It follows immediately that n D 72 and p D 1=3. Therefore, the
random variable Y has a binomial distribution with mean� D np D 24 and variance
�2 D np.1�p/ D 16. For large sample sizes (besides other restrictions) the binomial
distribution is approximated very well by a normal distribution with the same mean
and variance.

Let X be the random variable of a normal distribution with n.�; �2/, then

P.22 � Y � 28/ 	 P.21:5 < X < 28:5/;

where we used the convention of taking 0:5 above and below the limiting discrete
value. On using Eq. (1.38) we find with � D 24 and � D 4

P.22 � Y � 28/ 	 N

�
28:5 � �

�

�

� N

�
21:5 � �

�

�

	 N.1:125/� N.�0:625/ D N.1:125/� 1C N.0:625/

D 0:87 � 1C 0:734 D 0:604:

1.10 The Language of Fluid Turbulence

Problem 1.80 Show that the joint covariance is not symmetric in the time lag 	 ,
i.e., that Ruv.	/ D Rvu.�	/.

Solution The joint covariance is given by

Ruv.	/ D h u.t/v.t C 	/ i D ˝
u.t0 � 	/v.t0/

˛ D ˝
v.t0/u.t0 � 	/

˛ D Rvu.�	/;

where we used the new variable t0 D t C 	 .

Problem 1.81 Show that the joint covariance for u and a time derivative of v
satisfies Ru Pv.	/ D @Rvu.�	/=@	 .

Solution The joint covariance is given by

Ru Pv.	/ D
�

u.t/
@

@	
v.t C 	/

�

D @

@	

˝
u.t0 � 	/v.t0/ ˛

D @

@	

˝
v.t0/u.t0 � 	/

˛ D @

@	
Rvu.�	/;

where we used the new variable t0 D t C 	 .
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Problem 1.82 Show that the co-spectrum and quadrature spectrum may be
expressed as integrals

Couv.!/ D 1

2�

Z 1

0

ŒRuv.	/C Ruv.�	/� cos.!	/ d	;

Quuv.!/ D 1

2�

Z 1

0

ŒRuv.	/ � Ruv.�	/� sin.!	/ d	:

Solution The joint or cross-spectral density of the joint pair of random functions
u and v is given by

Suv.!/ D 1

2�

Z 1

�1
d	 ei!	Ruv.	/ D Couv.!/C iQuuv.!/;

where the co-spectrum is the real part of the cross-spectral density, Couv.!/ D
Re .Suv.!//, and the quadrature spectrum is the imaginary part, Quuv.!/ D
Im .Suv.!//. The integral can also be written in the form

Suv.!/ D 1

2�

Z 1

�1
d	 ei!	Ruv.	/

D 1

2�

Z 1

0

d	 ei!	Ruv.	/C 1

2�

Z 0

�1
d	 ei!	Ruv.	/

D 1

2�

Z 1

0

d	 ei!	Ruv.	/C 1

2�

Z 1

0

d	 e�i!	Ruv.�	/

D 1

2�

Z 1

0

d	
�
ei!	Ruv.	/C e�i!	Ruv.�	/

	
;

where we used the substitution 	 D �	 in the second step. Bear in mind
that e˙i!	 D cos.!	/ ˙ i sin.!	/, and therefore Re

�
e˙i!	

� D cos.!	/ and
Im

�
e˙i!	

� D ˙ sin.!	/. Since Ruv.˙	/ is a real function it follows that

Couv.!/ D Re ŒSuv.!/�

D Re



1

2�

Z 1

0

d	
�
ei!	Ruv.	/C e�i!	Ruv.�	/

	
�

D 1

2�

Z 1

0

d	
�
Re

�
ei!	

	
Ruv.	/C Re

�
e�i!	

	
Ruv.�	/

	

D 1

2�

Z 1

0

d	 Œcos.!	/Ruv.	/C cos.!	/Ruv.�	/�

D 1

2�

Z 1

0

d	 ŒRuv.	/C Ruv.�	/� cos.!	/
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and similarly

Quuv.!/ D Im ŒSuv.!/�

D Im



1

2�

Z 1

0

d	
�
ei!	Ruv.	/C e�i!	Ruv.�	/

	
�

D 1

2�

Z 1

0

d	
�
Im

�
ei!	

	
Ruv.	/C Im

�
e�i!	

	
Ruv.�	/

	

D 1

2�

Z 1

0

d	 Œsin.!	/Ruv.	/� sin.!	/Ruv.�	/�

D 1

2�

Z 1

0

d	 ŒRuv.	/ � Ruv.�	/� sin.!	/:

Problem 1.83 By introducing the coherence

Cohuv.!/ D
s

Co2uv C Qu2uv
jSvvjjSuuj

and the phase 
uv.!/ D arg .Suv/ (the argument of Suv), show that the joint or cross
spectral density can be expressed in terms of its magnitude and argument,

Suv.!/ D
p

jSuu.!/jjSvv.!/j Cohuv.!/ ei
uv.!/:

Solution Any complex number z can be rewritten in a polar form and, by using
Euler’s formula, expressed by

z D a C ib D jzj Œcos� C i sin�� D jzjei�;

where the argument � D arg z D arctan.b=a/. The complex cross spectral density
Suv can then be written as

Suv D jSuvjei arg Suv :

The argument of Suv is given by 
uv.!/ D arg .Suv/. The absolute value is given by

jSuvj D jCouv.!/C iQuuv.!/j D
q

Co2uv.!/C Qu2uv.!/;

so that

Suv.!/ D
p

jSuu.!/jjSvv.!/j Cohuv.!/ ei
uv.!/

where we used the definition of the coherence given above.



1.10 The Language of Fluid Turbulence 73

Problem 1.84 Show that if u0 D @u=@x, then �u0u0 D k2�uu.

Solution We have

Ru0u0 D
�
@u.x/

@x

@u.x0/
@x0

�

D @2

@x@x0
˝
u.x/u.x0/

˛ D @2

@x@x0 Ruu:

Introducing the new variable � D x0 � x, we find

@

@x0 D @�

@x0
@

@�
D @

@�
and

@

@x
D @�

@x

@

@�
D � @

@�
;

so that

Ru0u0.�/ D � @2

@�2
Ruu.�/:

The (1D) wavenumber spectrum is given by

�u0u0.k/ D 1

2�

Z 1

�1
e�ik�Ru0u0.�/d� D � 1

2�

Z 1

�1
e�ik� @

2

@�2
Ruu.�/d�:

Using integration by parts twice we find

�u0u0.k/ D k2
1

2�

Z 1

�1
e�ik�Ruu.�/d� D k2�uu.k/;

using that Ruu.�/ D 0 and @Ruu.�/=@� D 0 for � D ˙1.

Problem 1.85 Show that an exponentially decaying covariance

Ruu.	/ D h u.0/u.	/ i D Ce�
 j	 j (1.45)

yields a Lorentz distribution for the power spectral density,

Suu.!/ D 1

�

C


!2 C 
2
: (1.46)

Solution The joint or cross-spectral density of the joint pair of random functions
is given by

Suu.!/ D 1

2�

Z 1

�1
d	 ei!	Ruu.	/ D C

2�

Z 1

�1
d	 ei!	e�
 j	 j:
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Fig. 1.16 Shown is the covariance h u.	/u.0/ i calculated from Eq. (1.45) for 
 D 4 and C D 1

As an example, the covariance is plotted in Fig. 1.16 for 
 D 4 and C D 1. With
j	 j D 	 for 	 > 0 and j	 j D �	 for 	 < 0 we split the integral into

Suu.!/ D C

2�

Z 1

0

d	 e.i!�
/	 C C

2�

Z 0

�1
d	 e.i!	C
/	 :

By substituting 	 D �	 in the second integral we obtain

Suu.!/ D C

2�

Z 1

0

d	 e�.�i!C
/	 C C

2�

Z 1

0

d	 e�.i!	C
/	

D C

2�



1

.�i! C 
/
C 1

.i! C 
/

�

D 1

�

C


!2 C 
2
:

As an example, the spectral density is plotted in Fig. 1.17 for 
 D 4 and C D 1.

Problem 1.86 Consider now an additional periodic component to u.t/, say u.t/ D
v.t/C Ae�i!0t, with h v.t/ i D 0 and h v.0/v.	/ i D Ce�
 j	 j. Show that

h u.	/u.0/ i D Ce�
 j	 j C A2e�i!0	 (1.47)

and

Suu.!/ D 1

�

C


!2 C 
2
C A2ı.! � !0/: (1.48)

Sketch the covariance and the power spectral density.
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Fig. 1.17 Shown is the spectral density Suu.!/ calculated from Eq. (1.46) for 
 D 4 and C D 1

Solution For calculating the autocovariance we consider first

u.t/u.t0/ D v.t/v.t0/C Av.t/e�i!0 t0 C Av.t0/e�i!0t C A2e�i!0.tCt0/:

By averaging over u.t/u.t0/ we obtain

˝
u.t/u.t0/

˛ D ˝
v.t/v.t0/

˛C A2e�i!0.tCt0/;

since < Av.t/e�i!0 t0 >D A h v.t/ i e�i!0t0 D 0. By substituting 	 D t0 � t and by
setting t D 0 (because the homogeneous autocovariance depends only on the time
difference 	), we find

h u.0/u.	/ i D Ce�
 j	 j C A2e�i!0	 ;

where we used h v.0/v.	/ i D Ce�
 j	 j. Shown in Fig. 1.18 is the real part of
Eq. (1.47) for 
 D 4;C D 1;A D 1; and !0 D 3. The Fourier transform of the
autocovariance is then given by

Suu.!/ D 1

2�

Z 1

�1
d	 ei!	 h u.0/u.	/ i

D C

2�

Z 1

�1
d	 ei!	e�
 j	 j C A2

2�

Z 1

�1
d	 ei.!�!0/	 :
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Fig. 1.18 Shown is the covariance h u.	/u.0/ i calculated from Eq. (1.47) for 
 D 4;C D 1;A D
1; and !0 D 3
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Fig. 1.19 Shown is the spectral density Suu.!/ calculated from Eq. (1.48) for 
 D 4;C D 1;A D
1; and !0 D 3

The first integral has been evaluated in the previous problem. The second integral
yields the delta function with 2�ı.x/ D R1

�1 exp.ixt/dt, so that

Suu.!/ D 1

�

C


!2 C 
2
C A2ı.! � !0/:

Figure 1.19 shows the spectral density for 
 D 4;C D 1;A D 1; and !0 D 3.



Chapter 2
The Boltzmann Transport Equation

2.1 Derivation of the Boltzmann Transport Equation

The non-relativistic Boltzmann equation is given by

@f

@t
C v � rrf C F

m
� rvf D

�
ıf

ıt

�

coll

; (2.1)

where r; v, and t are independent variables.

Problem 2.1 Show that the Boltzmann equation (2.1) is invariant with respect to
Galilean transformations.

Solution For simplicity let us consider a Cartesian inertial system K with
(orthogonal) axes x; y; z and an inertial system K0 with axes x0; y0; z0 that is moving
with speed w in positive x-direction with respect to K. The Galilean transformation
is then given by

t0 D t r0.t/ D r � wtex v0 D v � wex a0 D a;

where ex is the unit vector in x-direction. In particular, for each coordinate we find

t0 D t x0.t/ D x � wt v0
x D vx � w

y0 D y v0
y D vy

z0 D z v0
z D vz:

© Springer International Publishing Switzerland 2016
A. Dosch, G.P. Zank, Transport Processes in Space Physics and Astrophysics,
Lecture Notes in Physics 918, DOI 10.1007/978-3-319-24880-6_2

77



78 2 The Boltzmann Transport Equation

Note that r, v, and t are independent variables, while the new coordinate r0 depends
on time t. More precisely, x0 depends on time t.

Consider now the change in variables, i.e., f .r; v; t/ ! f .r0.t/; v0; t/. Thus, we
have the following transformations:

A. Since the new spatial coordinate depends on time we have to rewrite the time
derivative and obtain

@f

@t
) @f

@t
C @f

@r0 � @r0

@t
D @f

@t
� wex � rr0 f ;

where @f=@r0 D rr0 and @r0=@t D �wex.
B. For the gradient of f we find

rrf D @f

@x
C @f

@y
C @f

@z
D @f

@x0
@x0

@x
C @f

@y0
@y0

@y
C @f

@z0
@z0

@z

D @f

@x0 C @f

@y0 C @f

@z0 D rr0 f :

Therefore, rr D rr0 .
C. Similarly we find

rvf D @f

@vx
C @f

@vy
C @f

@vz
D @f

@v0
x

@v0
x

@vx
C @f

@v0
y

@v0
y

@vy
C @f

@v0
z

@v0
z

@vz

D @f

@v0
x

C @f

@v0
y

C @f

@v0
z

D rv0 f :

It follows that rv D rv0 . Moreover, since a0 D a we have F0 D F.

Substituting the above results, the Boltzmann equation reads

�wexrr0 f C @f

@t
C �

v0 C wex
	 � rr0 f C F0

m
� rv0 f D

�
ıf

ıt

�0

coll

) @f

@t
C v0 � rr0 f C F0

m
� rv0 f D

�
ıf

ıt

�0

coll

:

Note that v was replaced by v0Cwex. Therefore, the Boltzmann equation is invariant
under Galilean transformation, i.e., it retains its form.

Problem 2.2 Show that the Boltzmann equation (2.1) transforms into the mixed
phase space coordinate form

@f

@t
C .ui C ci/

@f

@ri
�
�
@ui

@t
C �

uj C cj
� @ui

@rj
� Fi

m

�
@f

@ci
D
�
ıf

ıt

�

coll

; (2.2)

where we used Einstein’s summation convention, i.e., we sum over double indices.
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Solution We rewrite the Boltzmann equation as

@f

@t
C vi

@f

@ri
C Fi

m

@f

@vi
D
�
ıf

ıt

�

coll

:

The velocity v of a particle can also be described with respect to the bulk flow
velocity u.r; t/, through v D c.r; t/Cu.r; t/, where h v i D u.r; t/ and h c.r; t/ i D 0.
Here, c is the random velocity and sometimes also called the peculiar or thermal
velocity. The random velocity can then be written as c.r; t/ D v � u.r; t/, where
each component can be described by

ci.r; t/ D vi � ui.r; t/: (2.3)

Note that each component ci depends on all spatial coordinates and time.
Sometimes it might be more convenient to express the phase space distribution

f in terms of r; c; and t instead of r; v; and t. This means, that one has to introduce
a mixed phase space, where the configuration space coordinate is inertial, but the
velocity-space coordinate system is an accelerated system because it is tied to the
instantaneous local bulk velocity. (Taken from [1].)

In this case one has to transfer the Boltzmann equation into the new mixed
phase space coordinate system. The pdf f .r; v; t/ transforms then into f .r; c; t/. By
replacing the independent variable v with the random velocity c, one has to take into
account that the new variable c.r; t/ depends on r and t. Similar to the preceding
problem we have to transform the derivatives accordingly, which is done in the
following.

• The time derivative transforms into

@f

@t
H) @f

@t
C @f

@ci

@ci

@t
: (2.4)

The time derivative of the new variable ci.r; t/ can be written as (because it
depends on u, which depends on time t)

@ci

@t
D @ci

@ui

@ui

@t
D �@ui

@t
;

where we used @ci=@ui D �1. In this case Eq. (2.4) becomes

@f

@t
H) @f

@t
� @ui

@t

@f

@ci
: (2.5)

• The derivative with respect to the spatial coordinates can be written as

vi
@f

@ri
H) vi

@f

@ri
C vi

@f

@cj

@cj

@ri
: (2.6)
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Note that we use a different index for c, since each component cj depends on all
spatial coordinates ri. By using Eq. (2.3) we find

@cj

@ri
D @cj

@uj

@uj

@ri
D �@uj

@ri
;

where we again used @cj=@uj D �1. In this case we find for relation (2.6)

vi
@f

@ri
H) vi

@f

@ri
� vi

@f

@cj

@uj

@ri
D vi

@f

@ri
� vj

@f

@ci

@ui

@rj
: (2.7)

Note that we swapped the indices i and j for the velocity v and the random
velocity c in the last term on the right side. We do that, because we want to
summarize the result in terms of @f=@ci, and not @f=@cj. According to Einstein’s
summation convention, swapping the indices has no influence on the summation.
Substituting vi;j by Eq. (2.3) we find

vi
@f

@ri
) .ui C ci/

@f

@ri
� .uj C cj/

@ui

@rj

@f

@ci
:

• Finally, we transform

@f

@vi
H) @f

@ci

@ci

@vi
D @f

@ci
;

where we used @ci=@vi D 1 according to Eq. (2.3).

By summarizing all transformations we obtain Eq. (2.2).

Problem 2.3 Find the general solution to the Boltzmann equation (2.1) in the
absence of collisions, i.e., .ıf=ıt/coll D 0. Derive the general solution for the case
that the force F D 0.

Solution We consider first the force-free case with F D 0 and then the case
where F D const: ¤ 0.

• For simplicity we use the one-dimensional Boltzmann equation

@f

@t
C vx

@f

@x
D 0

and deduce the three-dimensional case from that result. Note that the function
f depends on the independent variables x and t, i.e., f D f .x; t/. We solve this
partial differential equation by using the method of characteristics. Therefore,
we parameterize x and t through the parameter s, so that f D f .t.s/; x.s//.



2.1 Derivation of the Boltzmann Transport Equation 81

The system of characteristics (system of ordinary differential equations, ODE)
and the initial conditions (for s D 0) are given by

dt.s/

ds
D 1 t.0/ D 0 (2.8a)

dx.s/

ds
D vx x.0/ D x0 (2.8b)

df .s/

ds
D 0 f .0/ D f .x0/: (2.8c)

The solutions to the differential equations (2.8a)–(2.8c) are given by

t.s/ D s C c1 c1 D 0 t.s/ D s

x.s/ D vxs C c2 c2 D x0 ) x.s/ D vxs C x0

f .s/ D c3 c3 D f .x0/ f .s/ D f .x0/;

and are referred to as the characteristic curve or simply the characteristic. In
particular, we find immediately

s D t

x.t/ D vxt C x0 x0 D x � vxt:

The characteristics are therefore curves which go through the point x0 at time
t D 0 into the direction of vx. The solution of the Boltzmann equation with initial
condition f .x; t D 0/ D f .x0/ can, therefore, be written as

f .x; t/ D f .x0/ D G.x � vxt/;

which means that the solution is constant along the characteristic. One can
interpret this solution in the way, that the initial profile f .x0/ is transported with
velocity vx without changing the form of that profile. Going back to the three-
dimensional case the solution is simply given by

f .x; t/ D f .x0/ D G.x � vt/:

• For the (1D) collisionless Boltzmann equation with F D const: ¤ 0 we have

@f

@t
C vx

@f

@x
C ax

@f

@vx
D 0:
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Here, the function f depends on x; vx and t, i.e., f D f .x; vx; t/. The system of
characteristics with the initial conditions is given by

dt.s/

ds
D 1 t.0/ D 0 (2.9a)

dx.s/

ds
D vx x.0/ D x0 (2.9b)

dvx.s/

ds
D ax vx.0/ D vx0 (2.9c)

df .s/

ds
D 0 f .0/ D f .x0; vx0/; (2.9d)

where ax is the acceleration in x direction. We start by solving the characteristic
equation (2.9c)

dvx.s/

ds
D ax H) vx.s/ D axs C c1 H) vx.s/ D axs C vx0;

where we used the initial condition vx.s D 0/ D vx0. The second differential
equation (2.9b) can then be written as

dx.s/

ds
D vx D axs C vx0;

where we substituted the solution of the first differential equation. The solution
to this differential equation is given by

x.s/ D ax

2
s2 C vx0s C c2 H) x.s/ D ax

2
s2 C vx0s C x0;

where we used the above initial condition. Obviously, we also find

t.s/ D s C c3 H) t.s/ D s:

Therefore, the characteristics are

x.t/ D ax

2
t2 C vx0t C x0 H) x0 D x � ax

2
t2 � vx0t

vx.t/ D axt C vx0 H) vx0 D vx � axt: (2.10)

The function f is constant along the characteristic described by Eq. (2.10),

f .x; vx; t/ D f .x0; vx0/ D G
h�

x � ax

2
t2 � vx0t



; .vx � axt/

i
:
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We can easily test, that the function G solves the Boltzmann equation. We use

f .x; vx; t/ D G.˚;�/;

where

˚ D x � ax

2
t2 � vx0t; � D vx � axt:

We find for the derivatives (for simplicity we abbreviate derivatives as @G=@t D
Gt and @G=@˚ D G˚ ):

@f

@t
D G˚˚t C G��t D G˚ .�axt � vx0/C G� .�ax/

vx
@f

@x
D vxG˚˚x D vxG˚

ax
@f

@vx
D axG��vx D axG�:

Adding all results up we find (since �axt � vx0 C vx D 0, see Eq. (2.10))

@f

@t
C vx

@f

@x
C ax

@f

@vx
D G˚ .�axt � vx0 C vx/C G� .�ax C ax/ D 0:

2.2 The Boltzmann Collision Operator

Problem 2.4 Show that for a ¤ b,

ı ..x � a/.x � b// D 1

ja � bj Œı.x � a/C ı.x � b/� :

Solution For an arbitrary function g.x/ with roots1 xi and g0.xi/ ¤ 0 the delta
function is given by

ı .g.x// D
X

i

ı.x � xi/

j g0.xi/ j :

1A root or zero, xi, of a function g.x/ is defined such that g.xi/ D 0, i.e., the function vanishes at
xi.
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For the above function g.x/ D .x � a/.x � b/ D x2 � ax � bx C ab the roots are
x1 D a and x2 D b and the derivative is given by g0.x/ D 2x � a � b. We find

ı ..x � a/.x � b// D 1

j2a � a � bjı.x � a/C 1

j2b � a � bjı.x � b/

D 1

ja � bj Œı.x � a/C ı.x � b/� :

Problem 2.5 Consider the relative motion of two particles P1 and P2 moving in
each other’s field of force with position vectors r1 and r2, and with masses m1 and
m2, see Fig. 2.1. The particles are subject to the central forces F1 and F2, which are
parallel to r D r1 � r2 and depend, therefore, only on r D jr1 � r2j. Starting from
the reduced mass equation of motion in polar coordinates,

M
�

Rr � r P
2



er C M
�

r R
 C 2Pr P




e
 D �@V.r/

@r
er; (2.11)

Fig. 2.1 Schematic of an electron (with charge eZ1, where Z1 D �1) scattering in the Coulomb
field of an ion (with charge eZ2 , where Z2 > 0 ). The trajectory of the electron is hyperbolic with
eccentricity �
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complete the steps in the derivation of

d


dr
D ˙ b

r2




1 � b2

r2
� 2V.r/

Mg2

�

; (2.12)

where 
 is the angle of the incoming particle, b is the impact parameter, g is the
constant relative speed, M D m1m2=.m1Cm2/ is the relative (or reduced) mass, and
V.r/ is the potential energy with V.r D 1/ D 0.

Solution We consider first the conservation laws for angular momentum and
total energy. In the second part we derive the expression given by Eq. (2.12).

A. Conservation of Angular Momentum. Here we describe two alternatives. The
first alternative is based on the Lagrangian and the conservation law for angular
momentum is derived by considering the angular component (coordinate) of
the Lagrangian. The second alternative is based on the definition of the angular
momentum.

a. Alternative 1—Equation (2.11) describes the equations of motion in both
directions, r and 
 . To verify this equation we start with the Lagrangian,
which is given by

L D T � V;

where T is the kinetic energy and V D V.r/ is the potential energy. Note
that in this particular case (polar coordinates) the kinetic energy T D Mv2=2
consists of a radial and angular component, T D Tr C T
 , so that

L D M

2
v2r C M

2
v2
 � V.r/ D M

2
Pr2 C M

2
r2 P
2 � V.r/;

where the radial and angular components of the velocity are given by vr D Pr
and v
 D r P
 , with v2 D v2r C v2
 . The equations of motion are then given by

d

dt

@L
@Pqi

� @L
@qi

D 0;

where the coordinate qi D r; 
 . Let us consider first the radial component,
where

d

dt

@L
@Pr � @L

@r
D M

�
Rr � r P
2



C @V.r/

@r
D 0:

Note that this corresponds exactly to the radial component in Eq. (2.11).
Similarly we obtain for the angular component

d

dt

@L
@ P
 � @L

@

D M

d

dt

�
r2 P




D Mr
�

r R
 C 2Pr P




D 0; (2.13)
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since @L=@
 D 0. For r ¤ 0 we can divide by r. The remaining expression
corresponds to the 
-component in Eq. (2.11). From Eq. (2.13) we can deduce
that

r2 P
 D const: D gb;

since its time derivative is zero. However, the latter relation can also be
derived from the conservation law for the angular momentum L, which is
described briefly in the following.

b. Alternative 2—The conservation law for angular momentum L is dL=dt D 0.
With v D vrer C v
e
 and r D rer we find

L D r 
 p D Mr 
 v D Mrvrer 
 er C Mrv
 er 
 e


D Mr2 P
er 
 e
 ;

since er 
 er D 0 and v
 D r P
 . Since er 
 e
 is perpendicular to the plane of
the particle motion, we simply write L D mr2 P
 . Since the particle mass M is
a constant we find

dL

dt
D M

d

dt

�
r2 P




D 0 ) r2 P
 D const: D gb: (2.14)

B. Conservation of Total Energy. The conservation law for the total energy can
be derived by using the Hamiltonian,

H D T C V:

With the above considerations we obtain

H D M

2
Pr2 C M

2
r2 P
2 C V.r/: (2.15)

The Hamiltonian H describes the total energy of the system. It can be shown
that the total time derivative of the Hamiltonian equals the partial time derivative
of H,

dH
dt

D @H
@t
:

Further, if the Hamiltonian does not explicitly depend on time, the total time
derivative vanishes and the total energy is conserved (constant). According to
Eq. (2.15) the Hamiltonian is independent of time, i.e., @H=@t D 0, and hence

dH
dt

D 0:
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Therefore, the total energy is constant and given by

M

2

�
Pr2 C r2 P
2



C V.r/ D const: D M

2
g2: (2.16)

We have now established that Eq. (2.11) describes the equations of motion for both
the r and 
 direction, and that the angular momentum is conserved. After deriving
the conservation laws for the angular momentum and the total energy we proceed
now with the derivation of Eq. (2.12).

Derivation of Eq. (2.12) We consider two particles P1 and P2. When particle P1
approaches particle P2 both the radial distance r and angle 
 change with time t.
Therefore, the time derivative of r is given by

Pr D dr

dt
D dr

d


d


dt
D dr

d

P
;

where P
 D d
=dt. Starting with Eq. (2.16) we substitute Pr, multiply by 2, and divide
by M and obtain

"�
dr

d


�2
P
2 C r2 P
2

#

D g2 � 2V.r/

M
;

where we moved the potential energy V.r/ to the right side. Substituting now P
2 by
Eq. (2.14) we obtain

�
dr

d


�2 g2b2

r4
D g2 � 2V.r/

M
� g2b2

r2
;

�
dr

d


�2
D r4

b2

�

1 � 2V.r/

Mg2
� b2

r2

�

:

By inverting and taking the square root, we find

d


dr
D ˙ b

r2




1 � 2V.r/

Mg2
� b2

r2

��1=2
: (2.17)

The negative root corresponds to an incoming particle since the radial coordinate
decreases with time until reaching the point of closest approach. The positive root
corresponds to an outgoing particle.

Problem 2.6 Consider the scattering of an electron with charge q1 D eZ1 (where
Z1 D �1) in the Coulomb field of an ion of charge q2 D eZ2 (where Z2 > 0),

E D eZ2
4��0

1

r2
er;
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where �0 is the permittivity of free space.

A. Show that

b2

rb0
D 1C " cos 
; (2.18)

where the eccentricity is given by

� �
s

1C b2

b20
I b0 D jZ1Z2je2

4��0Mg2
: (2.19)

B. Show that tan 
0 D b=b0 at the point of closest approach!
C. Show that the Coulomb or Rutherford scattering cross section is given by

� D b20
4 sin4

�
�

2

� D
 

Z1Z2e2

8��0Mg sin2 �
2

!2

:

Solution

A. The electron experiences the (attractive) force

F.r/ D q1E.r/ D e2Z1Z2
4��0

1

r2
er D �e2jZ1Z2j

4��0

1

r2
er (2.20)

in the Coulomb field of the ion (see Fig. 2.1). Note that Z1 and Z2 have opposite
signs (attractive force) and therefore the minus sign appears by taking the
absolute value of Z1 and Z2. The potential energy at a particular distance r is
then given by

V.r/ D
Z 1

r
F.r0/dr0 D �e2jZ1Z2j

4��0

Z 1

r

1

r02 dr0 D �e2jZ1Z2j
4��0

1

r
; (2.21)

where we used the fact that the potential energy for r D 1 vanishes, i.e.,
V.r D 1/ D 0. Since the parameter b0 is per definition a positive number,
see Eq. (2.19), we find

V.r/

Mg2
D �b0

r
: (2.22)

By substituting Eq. (2.22) into Eq. (2.17) from the previous problem we obtain

d


dr
D ˙ b

r2




1C 2
b0
r

� b2

r2

��1=2
: (2.23)
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Note that Eq. (2.17) was derived under a certain configuration in which the
negative root denotes an incoming particle and the positive root denotes an
outgoing particle. Now, according to Fig. 2.1 the coordinate system has been
rotated so that the configuration is symmetric and each direction can refer to both
an incoming or outgoing particle. We have to distinguish between the following
two cases:

• a positive root refers to a particle moving into negative y direction
• a negative root refers to a particle moving into positive y direction.

This can easily be understood from Fig. 2.1. For a particle that moves in a
negative y direction the angle 
.r/ is always increasing (positive sign), while for
a particle moving in a positive y direction the angle 
.r/ is always decreasing
(negative sign). The point of closest approach, r0, is given by d
=dr D 0, which
means that the square root of Eq. (2.23) has to be zero,

r20 C 2b0r0 � b2 D 0: (2.24)

The quadratic equation can easily be solved by

r0 D �b0 ˙
q

b20 C b2: (2.25)

Since, per definition, the radial distance cannot be negative we have to choose

the positive root, r0 D �b0C
q

b20 C b2! By rearranging the root we can express
the minimal distance in terms of the eccentricity (2.19),

r0 D b0.� � 1/: (2.26)

According to Fig. 2.1 we find that the angle under which the closest approach
occurs is given by 
.r0/ D � . (Note that the angle 
 is taken anticlockwise from
the positive x axis, the mathematical correct direction.) By considering a particle
moving into negative y direction (starting from r0) we can derive from Eq. (2.23)
by choosing the positive root

Z �C
.r/

�

d
 D
Z r

r0

b

r02




1C 2
b0
r0 � b2

r02

��1=2
dr0:

With the substitution u D b=r0 we find (according to [2], Eq. (2.261))


.r/ D �
Z b=r

b=r0

du
1

q
1C 2 b0

b u � u2
D � arcsin

0

B
@

u � b0
bq

1C b20
b2

1

C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

b=r

b=r0

:
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The denominator in the argument of the arcsin function can be expressed
through the eccentricity,

s

1C b20
b2

D b0
b

s

1C b2

b20
D b0

b
�:

By using the identity arcsin y D �=2� arccos.y/ we find


.r/ D � arcsin

 
b
b0

u � 1
�

!ˇ
ˇ
ˇ
ˇ
ˇ

b=r

b=r0

D
"

arccos

 
b
b0

u � 1
�

!

� �

2

#b=r

b=r0

:

The angle 
 is then given by


.r/ D arccos

 
b2

b0r � 1
�

!

� arccos

 
b2

b0r0
� 1
�

!

:

Let us consider now the last term on the right side. More specifically, we want
to calculate the argument of the arccos function. Therefore, we substitute r0 (see
Eq. 2.26) and we find

b2

b0r0�
� 1

�
D b2

b20�.� � 1/
� 1

�
D �2 � 1
�.� � 1/ � 1

�
D �2 � 1

.�2 � �/ � .� � 1/
.�2 � �/

D 1;

where we used b2=b20 D �2 � 1 in the second step, see also Eq. (2.19). Since
arccos.1/ D 0 we find immediately


.r/ D arccos



1

�

�
b2

rb0
� 1

��

;

which leads to

b2

rb0
D 1C � cos 
: (2.27)

B. From Fig. 2.1 we can deduce that for r ! 1 the angle 
 ! � ˙ 
0. Note
that this is valid for both, a particle moving in positive and negative y-direction.
Letting r ! 1 in Eq. (2.27) we find that

0 D 1C � cos.� ˙ 
0/: H) cos.
0/ D 1

�
;
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since cos.� ˙ x/ D � cos.x/. It is an easy matter to show then that

tan.
0/ D
p
1 � cos2 
0

cos 
0
D

p
�2 � 1 D b

b0
:

C. The cross section is defined by

� D b

sin�

ˇ
ˇ
ˇ
ˇ

db

d�

ˇ
ˇ
ˇ
ˇ ; (2.28)

where � is the scattering angle (i.e., the angle between the two asymptotes,
which describe an incoming/outgoing particle). We know that the point of
closest approach is defined by the angle 
0 with (compare with Fig. 2.1)

tan 
0 D b

b0
and 
0 D �

2
� �

2
:

By combining both equations we obtain

b D b0 tan
��

2
� �

2




ˇ
ˇ
ˇ
ˇ

db

d�

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
�b0
2

1

cos2
�
�
2

� �

2

�

ˇ
ˇ
ˇ
ˇ
ˇ

D b0
2

1

cos2
�
�
2

� �

2

� : (2.29)

Inserting the last two equations in Eq. (2.28) we obtain for the cross section

� D b20
2

tan
�
�
2

� �

2

�

sin�

1

cos2
�
�
2

� �

2

� : (2.30)

By using tan x D sin x= cos x and

cos
��

2
� �

2



D sin

��

2




sin
��

2
� �

2



D cos

��

2




sin� D 2 sin
��

2



cos

��

2



(2.31)

we find the Rutherford cross section

� D b20
4

1

sin4
�
�

2

� : (2.32)
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2.3 The Boltzmann Equation and the Fluid Equations

The equations describing the conservation of mass, momentum and energy
are

@n

@t
C r � .nu/ D @n

@t
C
X

i

@

@xi
.nui/ D 0 (2.33)

mn

0

@@ui

@t
C
X

j

uj
@ui

@xj

1

A D �
X

j

@pij

@xj
(2.34)

@

@t




mn

�

e C u2

2

��

C
X

i

@

@xi

2

4mnui

�

e C u2

2

�

C
X

j

ujpij C qi

3

5 D 0:

(2.35)

The equations for conservation of mass and energy are scalars; the equation
for conservation of momentum describes the i-th component of that vector.

The Maxwell-Boltzmann distribution is given by

f .x; v; t/ D n

�
m

2�kBT

�3=2
exp




�m
.v � u/2

2kBT

�

; (2.36)

where kB is Boltzmann’s constant, u, n, and T are the bulk velocity, number
density, and temperature of the gas, respectively.

Problem 2.7 By using the conservation equations for mass, momentum and energy,
derive the evolution equation for pij assuming the flow is smooth, i.e., the flow has
no discontinuities like shock waves or contact discontinuities.

Solution The idea is as follows: To derive an evolution equation for the pressure
tensor we start from the equation for conservation of energy (2.35) and transform
that equation in such a way that the conservation of mass and momentum can be
used for simplification. By expanding Eq. (2.35) we obtain

m
@ne

@t
C m

2

@nu2

@t
C m

X

i

@.nuie/

@xi

C m

2

X

i

@.nuiu2/

@xi
C
X

i

X

j

@ujpij

@xi
C
X

i

@qi

@xi
D 0: (2.37)
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Here we used the fact that the mass m is constant, i.e., independent of time and
space coordinates. Consider now the second and fourth term in that equation. By
expanding we obtain

m

2

 
@nu2

@t
C
X

i

@.nuiu2/

@xi

!

D m

2

 

u2
@n

@t
C n

@u2

@t
C u2

X

i

@.nui/

@xi
C
X

i

nui
@u2

@xi

!

D m

2

 

n
@u2

@t
C
X

i

nui
@u2

@xi

!

; (2.38)

where we used the continuity equation (2.33) for the summation of the first and
third term in the second line. By using u2 D u2x C u2y C u2z D P

j u2j for the partial
derivatives with respect to t and xi and by pulling out the number density n we can
simplify Eq. (2.38) to obtain

m

2

 
@nu2

@t
C
X

i

@.nuiu2/

@xi

!

D nm

0

@
X

j

uj
@uj

@t
C
X

i

X

j

uiuj
@uj

@xi

1

A :

We change now the indices, i.e., i $ j. The change of indices has no influence on
the summation. We then pull out the summation over index i multiplied by ui and
obtain

m

2

 
@nu2

@t
C
X

i

@.nuiu2/

@xi

!

D nm
X

i

ui

0

@@ui

@t
C
X

j

uj
@ui

@xj

1

A

D �
X

i

X

j

ui
@pij

@xj
;

where we used the equation of momentum conservation (2.34). We substitute this
result back into Eq. (2.37) and obtain

m
@ne

@t
C m

X

i

@.nuie/

@xi
C
X

i

X

j

@ujpij

@xi
�
X

i

X

j

ui
@pij

@xj
C
X

i

@qi

@xi
D 0:

(2.39)
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Consider now the third term

X

i

X

j

@ujpij

@xi
D
X

i

X

j

uj
@pij

@xi
C
X

i

X

j

pij
@uj

@xi

D
X

i

X

j

ui
@pij

@xj
C
X

i

X

j

pij
@uj

@xi
: (2.40)

Note that we changed the summation index in the first term of the last line; this
has no influence on the result. We also used the fact that the pressure tensor is
symmetric, i.e., pij D pji, which can be seen from the definition of the pressure
tensor (we refer to [5] for further details). With this result Eq. (2.39) can be
simplified and we obtain

m
@ne

@t
C m

X

i

@.nuie/

@xi
C
X

i

X

j

pij
@uj

@xi
C
X

i

@qi

@xi
D 0: (2.41)

The second term can be described by

m
X

i

@.nuie/

@xi
D m

X

i

ui
@ne

@xi
C m

X

i

ne
@ui

@xi
(2.42)

giving
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C m
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i
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ne
@ui

@xi
C
X

i

X

j

pij
@uj

@xi
C
X

i

@qi

@xi
D 0:

By multiplying the last equation by 2 and substitute 2mne D P
j pjj we obtain

X

j

@pjj

@t
C
X

i

X

j

ui
@pjj

@xi
C
X

i

X

j

pjj
@ui

@xi

C 2
X

i

X

j

pij
@uj

@xi
C 2

X

i

@qi

@xi
D 0: (2.43)

This equation can be interpreted as the evolution equation for the pressure tensor.

Problem 2.8 Use the Maxwell-Boltzmann distribution (2.36) to show that the
definitions for (A) the number density n, (B) the bulk velocity u, (C) the temperature
T, and (D) the pressure tensor pij do indeed yield these quantities, and that the
pressure tensor can be expressed as pij D p.x; t/ıij. Show too that (E) the heat flux
q vanishes.
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Solution The Maxwell-Boltzmann distribution is given by Eq. (2.36). In all
following calculations we will make use of

Z 1

�1
x�e�ˇx2dx D 0 for x D 1; 3; 5; 7; : : : ; (2.44)

since the Maxwell-Boltzmann distribution satisfies this relation for the expected
value E ŒX��. For more details see also Problem 2.12 later in this chapter, where the
expected values are calculated from the moment-generating function.

A. The number density is defined as

n D
Z

f .x; v; t/d3v:

With the substitution c D v � u and c2 D c2x C c2y C c2z we find

Z

f .x; v; t/d3v D n
� m

2�kT


3=2 Z

exp




�m
.v � u/2

2kT

�

d3v

D n
� m

2�kT


3=2 Z

exp




�mc2

2kT

�

d3c D n:

B. The bulk velocity is defined by

nu D
Z

vf .x; v; t/d3v:

Consider the i-th component (i.e., nui) for which we have

Z

vif .x; v; t/d3v D n
� m

2�kT


3=2 Z

vi exp




�m
.v � u/2

2kT

�

d3v:

By using again the substitution ci D vi � ui we find

Z

vif .x; v; t/d3v D n
� m

2�kT


3=2 Z

.ci C ui/ exp




�mc2

2kT

�

d3c

D n
� m

2�kT


3=2

Z

ci exp




�mc2

2kT

�

d3c C
Z

ui exp




�mc2

2kT

�

d3c

�

:

The first integral yields zero (see Eq. (2.44)) and the second integral can be
solved with the help of part A. We find

Z

vif .x; v; t/d3v D nui

� m

2�kT


3=2 Z

exp




�mc2

2kT

�

d3c D nui:
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C. The temperature T is defined by

3

2
nkT D m

2

Z

.v � u/2f .x; v; t/d3v:

Again, by using c D v � u we find

m

2

Z

.v � u/2f .x; v; t/d3v D nm
� m

2�kT


3=2 1

2

Z

c2 exp




�mc2

2kT

�

d3c

D 1

2
nm

� m

2�kT


3=2
3
�3=2

2

�
2kT

m

�5=2

D 3

2
nkT;

where the integration yields .3=2/�3=2 .2kT=m/5=2. The factor 3 originates from
the summation of c2 D c2x C c2y C c2z .

D. The pressure tensor is given by

pij D
Z

m.vi � ui/.vj � uj/fd
3v

With the substitution ci D vi � ui we obtain

pij D nm
� m

2�kT


3=2 Z

cicj exp




�mc2

2kT

�

d3c:

With d3c D dcidcjdck and c2 D c2i C c2j C c2k we find that for i ¤ j the pressure
tensor is zero (see part B). The integral only contributes for i D j and we have

pii D nm
� m

2�kT


3=2 Z

c2i exp




�mc2

2kT

�

d3c

D nm
� m

2�kT


3=2 �3=2

2

�
2kT

m

�5=2

D nkT:

The pressure tensor can therefore be written as pij D pıij, where p D nkT for
ideal gases.

E. The i-th component of the heat flux vector is defined by

qi D m

2

Z

.vi � ui/.v � u/2fd3v:
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Substitute again c D v � u and we obtain

qi D n
� m

2�kT


3=2 m

2

Z

cic
2 exp




�mc2

2kT

�

d3c D 0:

The integral yields zero since we have integrals of the form (2.44) in each term.

Problem 2.9 Using the above results, derive the Euler equations.

Solution The Euler equations result from assuming that

pij D p.x; t/ıij and qi D 0;

where p.x; t/ is the scalar pressure. For the conservation of momentum we find from
Eq. (2.34) for the i-th component

mn

0

@
@ui

@t
C
X

j

uj
@ui

@xj

1

A D �
X

j

@p

@xj
ıij D � @p

@xi

or written as a vector

mn

�
@u
@t

C u � ru
�

D �rp:

For the energy conservation we use Eq. (2.43) and
P

j pjj D 3p and find
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i
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@xi
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X
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@ui

@xi
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X

i

X

j
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@uj

@xi
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3
@p

@t
C 3

X

i

ui
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@xi
C 3p

X

i

@ui

@xi
C 2p

X

i

@ui

@xi
D 0

3
@p

@t
C 3

X

i

ui
@p

@xi
C 5p

X

i

@ui

@xi
D 0:

If we divide by 3 and write the summations with the help of vectors we eventually
find

@p

@t
C u � rp C 5

3
pr � u D 0:

Together with the continuity equation (2.33) we find the Euler equations,

@n

@t
C r � .nu/ D 0 (2.45a)



98 2 The Boltzmann Transport Equation

mn

�
@u
@t

C u � ru
�

D �rp (2.45b)

@p

@t
C u � rp C 5

3
pr � u D 0: (2.45c)

Problem 2.10 Linearize the 1D Euler equations about the constant state �0 D
.n0; u0; p0/, i.e., consider perturbations ı� such that � D �0 C ı� . Derive a linear
wave equation in terms of a single variable, say ın. Seek solutions to the linear wave
equation in the form exp Œi.!t � kx/�, and show that the Euler equations admit a non-
propagating zero-frequency wave and forward and backward propagating acoustic
modes satisfying the dispersion relation !0 D ! � u0k D ˙Csk, where Cs is a
suitably defined sound speed.

Solution The 1D Euler equations are given by

@n

@t
C @

@x
.nux/ D 0 (2.46a)

nm

�
@ux

@t
C ux

@ux

@x

�

D �@p

@x
(2.46b)

@p

@t
C ux

@p

@x
C 5

3
p
@ux

@x
D 0: (2.46c)

We linearize the 1D Euler equations about the constant state �0 D .n0; u0; p0/, i.e.,
we consider a small perturbation so that � D �0 C ı� . The number density n, the
velocity ux, and the pressure p are then given by

n D n0 C ın ux D u0 C ıu p D p0 C ıp:

We substitute these equations into the Euler equations and obtain

@ın

@t
C u0

@ın

@x
C n0

@ıu

@x
D 0 (2.47a)

mn0
@ıu

@t
C mn0u0

@ıu

@x
D �@ıp

@x
(2.47b)

@ıp

@t
C u0

@ıp

@x
C 5

3
p0
@ıu

@x
D 0: (2.47c)

Note that we neglected terms of order ı�2 and ı�@ı�=@t or ı�@ı�=@x and that
the derivatives of a constant are zero.

Alternative 1 We assume now that the solutions of the differential equations have
the form ı� D ı�0 exp Œi.!t � kx/�, where ı� D ın; ıu; ıp, i.e.,

ın D ın0e
i.!t�kx/ ıu D ıu0e

i.!t�kx/ ıp D ıp0e
i.!t�kx/:
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For the partial derivatives with respect to time t and space coordinate x we find
in general

@ı�

@t
D i!ı�

@ı�

@x
D �ikı�:

The linearized Euler equations can then be written as

i!ın � iku0ın � ikn0ıu D 0 .! � u0k/ ın � kn0ıu D 0

mn0i!ıu � ikmn0u0ıu D ikıp ) .! � u0k/ ıu � k

mn0
ıp D 0

i!ıp � iku0ıp � ik
5

3
p0ıu D 0 .! � u0k/ ıp � k

5

3
p0ıu D 0:

By using !0 D ! � u0k we introduce the matrix A and the vector ı� ,

A D

0

B
@

!0 �n0k 0

0 !0 � k
mn0

0 � 5
3
p0k !0

1

C
A ı� D

0

@
ın
ıu
ıp

1

A ;

so that the set of equations can be written as

A � ı� D 0:

The trivial solution is, of course, ı� D 0. Non-trivial solutions are given by
the eigenvalues of the matrix A. Therefore, we determine first the characteristic
equation (also called the characteristic polynomial), det A D 0,

det A D !0 �



!02 � 5

3

k2p0
mn0

�

D 0:

The eigenvalues are given by the zeros of the characteristic equation, hence,

!0
1 D 0 !0

2;3 D ˙
r
5

3

kBT

m
k;

where we used p0 D n0kBT (ideal gas law). The sound speed is defined as Cs Dp

kBT=m with the adiabatic index 
 (which is 
 D 5=3 for ideal gases). We

find

!0
1 D 0 !0

2;3 D ˙Csk:

The Euler equations, indeed, admit a zero frequency (non-propagating) wave,
and forward and backward propagating acoustic modes with sound speed Cs.
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Alternative 2 Our starting point are again the linearized 1D Euler equa-
tions (2.47a)–(2.47c). By introducing the convective derivative

D

Dt
D @

@t
C u0

@

@x
; (2.48)

we may write the linearized 1D Euler equations as

Dın

Dt
C n0

@ıu

@x
D 0

Dıu

Dt
C 1

n0m

@ıp

@x
D 0

Dıp

Dt
C 5

3
p0
@ıu

@x
D 0:

This is a set of three differential equations with three unknowns (ın; ıu; and ıp).
We want to solve that set of differential equation for ıp. Therefore, we take the
convective derivative of the first and third equation, and the partial derivative with
respect to x of the second equation resulting in

D2ın

Dt2
C n0

@

@x

Dıu

Dt
D 0

@

@x

Dıu

Dt
C 1

n0m

@2ıp

@x2
D 0

D2ıp

Dt2
C 5

3
p0
@

@x

Dıu

Dt
D 0:

We substitute now the term with ıu in the second and third equation by using the
first equation (continuity equation). We obtain a set of two differential equations,

�D2ın

Dt2
C 1

m

@2ıp

@x2
D 0

D2ıp

Dt2
� 5

3

p0
n0

D2ın

Dt2
D 0:

Consider now an ideal gas with p0 D n0kBT. By substituting the term with ın in
the second equation we obtain

D2ıp

Dt2
� 5

3

kBT

m

@2ıp

@x2
D D2ıp

Dt2
� C2

s

@2ıp

@x2
D 0;

where we defined the sound speed Cs as above. This equation is a wave equation.
By using the above definition of the convective derivative we obtain

D2

Dt2
D @2

@t2
C 2u0

@2

@t@x
C u20

@2

@x2
;
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so that

@2ıp

@t2
C 2u0

@2ıp

@t@x
C u20

@2ıp

@x2
� C2

s

@2ıp

@x2
D 0: (2.49)

We seek now solutions of the form ıp D ı Np exp Œi.!t � kx/�. We obviously find

@2ıp

@t2
D �!2ıp @2ıp

@x2
D �k2ıp

@2ıp

@t@x
D !kıp;

so that Eq. (2.49) becomes

.�!2 C 2u0!k � u20k
2/C C2

s k2 D 0:

The term in brackets can be written as .�!2 C 2u0!k � u20k
2/ D �.! � u0k/2 so

that by using !0 as defined above

!02 � .! � u0k/
2 D C2

s k2 H) !0 � ! � u0k D ˙Csk:

Note that !0 is the frequency of the wave seen by an observer who is co-moving
with the background flow at speed u0, and ! is the frequency seen by an observer
outside (not co-moving) with the background flow.

A wave (seen from an observer outside the co-moving frame) that travels with
the same velocity as the background medium u0 and with dispersion ! D u0k
has a zero frequency in the co-moving frame

!0 D u0k � u0k D 0;

and is therefore, non-propagating in that co-moving frame.

2.4 The Chapman-Enskog Expansion

We consider an expansion of the distribution function f about the equilibrium
or Maxwellian distribution f0 in the form

f D f0 C �f1 C �2f2 C : : : ;

(continued)
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where f1; f2; : : : are successive corrections to f0. We consider also the force-
free Boltzmann equation,

@f

@t
C vk

@f

@xk
D ��. f � f0/;

where the collision operator on the right side is approximated by a scattering
frequency �. By using the above expansion for the distribution function we
find

@f0
@t

C vk
@f0
@xk

D ��f1: (2.50)

Since f0 is the Maxwell-Boltzmann distribution we can evaluate the left side
and find an expression for the first correction f1.

Problem 2.11 Complete the details for the derivation of the expressions above for
@f0=@t and @f0=@xk. Use these results to complete the derivation of the expression
for f1.

Solution The first correction f1 to the Maxwell-Boltzmann distribution f0 can be
calculated by using Eq. (2.50), where the Maxwell-Boltzmann distribution (2.36) is
given by

f0 D n

�
m

2�kBT

�3=2
exp




�m.v � u/2

2kBT

�

: (2.51)

Note that the density n, velocity u, and temperature T are functions of time and
space, so that n D n.x; t/, u D u.x; t/, and T D T.x; t/. By introducing these new
variables we have to transform the derivatives according to the new time and spatial
dependencies of the new variables (see also Problems 2.1 and 2.2).

The idea is as follows: First, we derive the transformations for the time derivative
and the spatial derivative, respectively. Finally, these expressions will be substituted
back into Eq. (2.50), which will lead to an expression for the first correction in terms
of f0.

A. The time derivative transforms as follows

@f0
@t

D @f0
@n

@n

@t
C @f0
@u
@u
@t

C @f0
@T

@T

@t
; (2.52)
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where (using the definition of the Maxwell-Boltzmann distribution)

@f0
@n

D f0
n
; (2.53a)

@f0
@u

D f0
m.v � u/

kBT
; (2.53b)

@f0
@T

D �3
2

1

T
f0 C m.v � u/2

2kBT

1

T
f0: (2.53c)

All derivatives can be expressed in terms of the Maxwell-Boltzmann distribution
f0. By substituting these results into Eq. (2.52) we obtain

@f0
@t

D f0



1

n

@n

@t
C m.v � u/

kBT

@u
@t

� 3

2

1

T

@T

@t
C m.v � u/2

2kBT

1

T

@T

@t

�

:

By substituting c D v � u and by using a component description we find for the
i-th component

@f0
@t

D f0



1

n

@n

@t
C mci

kBT

@ui

@t
� 3

2

1

T

@T

@t
C mc2

2kBT

1

T

@T

@t

�

: (2.54)

Equation (2.54) includes time derivatives of the density n, velocity ui, and
temperature T. To replace these time derivatives we use the Euler equa-
tions (2.45a)–(2.45c) (with Einstein’s summation convention),

@n

@t
C @

@xk
.nuk/ D 0

mn

�
@ui

@t
C uk

@ui

@xk

�

D � @p

@xk

@p

@t
C uk

@p

@xk
C 5

3
p
@uk

@xk
D 0:

With p D nkBT we obtain

1

n

@n

@t
D �@uk

@xk
� uk

n

@n

@xk

@ui

@t
D �uk

@ui

@xk
� kBT

mn

@n

@xi
� kB

m

@T

@xi

1

T

@T

@t
D �2

3

@uk

@xk
� uk

T

@T

@xk
:
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For the last equation we used the continuity equation to eliminate the terms
proportional to @n=@t and @n=@xk By substituting these results back into
Eq. (2.54) we obtain

1

f0

@f0
@t

D � uk

n

@n

@xk
� uk

mci

kBT

@ui

@xk
� ci

n

@n

@xi
� ci

T

@T

@xi

C 3

2

uk

T

@T

@xk
� 2

3

mc2

2kBT

@uk

@xk
� mc2

2kBT

uk

T

@T

@xk
: (2.55)

Equation (2.55) is just the transformation of the time derivative in Eq. (2.50).
B. We also need to calculate the spatial derivatives in Eq. (2.50), which is done

similarly to the time derivative (2.52) and we obtain

@f0
@xk

D@f0
@n

@n

@xk
C @f0
@u

@u
@xk

C @f0
@T

@T

@xk

Df0



1

n

@n
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C m.v � u/

kBT
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@xk

� 3

2

1

T

@T

@xk
C m.v � u/2

2kBT

1

T

@T

@xk

�

:

where we used Eqs. (2.53a)–(2.53c) to replace the derivatives of the Maxwell-
Boltzmann distribution, as before. By multiplying this equation with vk and
dividing by f0 we obtain

vk

f0

@f0
@xk

Dvk

n

@n

@xk
C m

kBT
civk

@ui

@xk
� 3

2

1

T
vk
@T

@xk
C mc2

2kBT

1

T
vk
@T

@xk
: (2.56)

We have also used c D v � u and substituted vk D ck C uk.

Now we substitute the results (2.55) and (2.56) back into Eq. (2.50) and obtain the
somewhat lengthy expression

�� f1
f0

D � uk

n

@n

@xk
� uk

mci

kBT

@ui

@xk
� ci

n

@n

@xi
� ci

T

@T

@xi
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T

@T
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3

mc2

2kBT

@uk
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� mc2

2kBT
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T
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C ck C uk

n
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@xk

C m

kBT
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� 3

2

1

T
.ck C uk/

@T

@xk
C mc2

2kBT

1

T
.ck C uk/

@T

@xk
:

Note that ci@=@xi D ck@=@xk, since we use Einstein’s summation convention. After
some simplifications we obtain

�� f1
f0

D � 2

3

mc2

2kBT

@uk

@xk
C m

kBT
cick

@ui

@xk
� 5

2

1

T
ck
@T

@xk
C mc2

2kBT

1

T
ck
@T

@xk
:
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From this equation it follows that

��f1 Df0



m

kBT

�

cick � 1

3
c2ıik

�
@ui

@xk
C ck

�
mc2

2kBT
� 5

2

�
1

T

@T

@xk

�

: (2.57)

The first correction can be described through the Maxwell-Boltzmann distribution
function.

Problem 2.12 Consider the 1D pdf

f .x/ D
r
ˇ

�
e�ˇx2 for � 1 < x < 1: (2.58)

(A) Show that the moment-generating function is given by M.t/ D exp .t2=4ˇ/. (B)
Derive the expectations E.X/, E.X2/, E.X3/, E.X4/, E.X5/ and E.X6/. (C) Hence
show that one obtains the integrals

p
�

2ˇ3=2
D
Z 1

�1
x2e�ˇx2dx (2.59a)

3
p
�

4ˇ5=2
D
Z 1

�1
x4e�ˇx2dx (2.59b)

15
p
�

8ˇ7=2
D
Z 1

�1
x6e�ˇx2dx: (2.59c)

Solution

A. The moment-generating function is defined by Eq. (1.15), so that

M.t/ D
Z 1

�1
etxf .x/dx D

r
ˇ

�

Z 1

�1
e�ˇx2Ctxdx:

Consider the exponent. With the transformation

�ˇx2 C tx D �ˇ
�

x � t

2ˇ

�2
C t2

4ˇ
D �ˇy2 C t2

4ˇ
;

where we substituted y D x � t=2ˇ, we obtain

M.t/ D
r
ˇ

�
exp

�
t2

4ˇ

�Z 1

�1
e�ˇy2dy D exp

�
t2

4ˇ

�

;

since the integration yields
p
�=ˇ.
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B. The n-th moment (or the n-th derivative) of the moment-generating function is
given by

Mn.t/ D
r
ˇ

�

Z 1

�1
xne�ˇx2Ctxdx D dn

dtn




exp

�
t2

4ˇ

��

:

Since E.Xn/ D Mn.t D 0/ we find with M.0/ D 1 the following results

M0.t/ D t

2ˇ
M.t/ E.X/ D 0

M00.t/ D
�
1

4

t2

ˇ2
C 1

2ˇ

�

M.t/ E.X2/ D 1

2ˇ

M000.t/ D
�
3

4

t

ˇ2
C 1

8

t3

ˇ3

�

M.t/ E.X3/ D 0

M4.t/ D
�
3

4

1

ˇ2
C 3

4

t2

ˇ3
C 1

16

t4

ˇ4

�

M.t/ E.X4/ D 3

4

1

ˇ2

M5.t/ D
�
15

8

t

ˇ3
C 5

8

t3

ˇ4
C 1

32

t5

ˇ5

�

M.t/ E.X5/ D 0

M6.t/ D
�
15

8

1

ˇ3
C 45

16

t2

ˇ4
C 15

32

t4

ˇ5
C 1

64

t6

ˇ6

�

M.t/ E.X6/ D 15

8

1

ˇ3
:

C. With E.Xn/ D Mn.t D 0/ it follows immediately that

E.Xn/ D
r
ˇ

�

Z 1

�1
xne�ˇx2dx

)
Z 1

�1
xne�ˇx2dx D

r
�

ˇ
E.Xn/: (2.60)

By combining the expectations derived in part (B) with Eq. (2.60) we find the
equations given by (2.59a)–(2.59c).

Problem 2.13 Show that the Chapman-Enskog expression for f1 satisfies the
constraints

Z

f1d
3v D 0

Z

cf1d
3v D 0

Z

c2f1d
3v D 0 (2.61)

Solution The first order correction term of the Chapman-Enskog expansion is
given by

f1 D � f0
�



m

kBT

�

cick � 1

3
c2ıik

�
@ui

@xk
C ck

�
mc2

2kBT
� 5

2

�
1

T

@T

@xk

�

; (2.62)
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with the scattering frequency � and the Maxwell-Boltzmann distribution f0 (com-
pare with Eq. (2.57)). For the sake of brevity we write the Maxwell-Boltzmann
distribution function as

f0 D n

�
ˇ

�

�3=2
e�ˇc2 ; (2.63)

where ˇ D m=.2kT/ and c D v � u. This has the advantage that we can use the
results of the previous Problem 2.12; compare with the probability density function
given by Eq. (2.51). With d3v D d3c the constraints can also be written as

0 D
Z

c˛f1d
3c (2.64)

D 1

�

Z

c˛f0



m

kBT

@ui

@xk

�

cick � 1

3
c2ıik

�

C 1

T

@T

@xk
ck

�
mc2

2kT
� 5

2

��

d3c:

where ˛ D 0; 1; 2 for the zeroth, first, and second constraint respectively. In
Eq. (2.64) the constants kB;T;m and the partial derivatives with respect to xk are
independent of d3c and, thus, the integral operates only on the terms in rounded
brackets (which include the velocity c). Each of the integrals on the right hand side
has to vanish independently, therefore, we consider both integrals separately. For
simplicity we substitute f0 by Eq. (2.63) and neglect all constant factors and obtain
the following two conditions

A W
Z

c˛e�ˇc2
�

cick � 1

3
c2ıik

�

d3c D 0 (2.65a)

B W
Z

c˛e�ˇc2ck

�

ˇc2 � 5

2

�

d3c D 0: (2.65b)

Basically, the constraints (2.61) reduce to the two conditions A and B.

First Constraint: ˛ D 0

A. In this case the expression given by Eq. (2.65a) becomes

Z 1

�1
e�ˇc2

�

cick � 1

3
c2ıik

�

d3c: (2.66)

Here we have to distinguish between the two cases i D k and i ¤ k.

Case i D k: We find for Eq. (2.66)

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2j Cc2k /




c2i � 1

3
.c2i C c2j C c2k/

�

dcidcjdck:
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Note that the integral of each component within the squared brackets yields
the same result, i.e., the integrals with c2j and c2k yield the same result as c2i ,
hence we set .c2i C c2j C c2k/ D 3c2i and obtain

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2j Cc2k /

�
c2i � c2i

	
dcidcjdck D 0:

Case i ¤ k: In this case Eq. (2.66) becomes

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2j Cc2k /cickdcidcjdck D 0:

The result is zero due to odd orders of c under the integral, compare with
Eq. (2.44).

B. Let us now consider the second integral given by Eq. (2.65b). For ˛ D 0 we
obtain

Z 1

�1
e�ˇc2ck




ˇc2 � 5

2

�

d3c: (2.67)

By expanding c2 D c2i C c2j C c2k we find

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2j Cc2k /




ˇ.ckc2i C ckc2j C c3k/ � 5

2
ck

�

dcidcjdck D 0:

This integral is zero, where we used again Eq. (2.44).

Obviously, the first constraint is fulfilled.

Second Constraint: ˛ D 1 The result of this constraint is a vector, but for
convenience we consider only the j-th component of the vector c.

A. For the first integral we find

Z

e�ˇc2
�

cicjck � 1

3
cjc

2ıik

�

d3c: (2.68)

Here we have to distinguish the following cases:

Case i D k D j: In this case Eq. (2.68) becomes

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2l Cc2m/




c3i � 1

3
ci.c

2
i C c2l C c2m/

�

dcidcldcm D 0;
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where we used the indices i; l;m to avoid confusion with the indices j; k. One
can see immediately that the integral vanishes according to Eq. (2.44), since
we have always an odd order of ci under the integral.

Case i D k ¤ j: In this case Eq. (2.68) becomes

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2j Cc2l /




c2i cj � 1

3
cj.c

2
i C c2j C c2l /

�

dcidcjdcl D 0;

which vanishes according to Eq. (2.44), since we have always odd orders of
cj under the integral.

Case i ¤ k D j: In this case Eq. (2.68) becomes

Z

e�ˇ.c2i Cc2j Cc2l /cic
2
j dcidcjdcl D 0;

which vanishes also according to Eq. (2.44).
Case i ¤ k ¤ j and i ¤ j: In this last case, where all indices are mutually

distinct, Eq. (2.68) becomes

Z

e�ˇ.c2i Cc2j Cc2k /cicjck dcidcjdck D 0;

which vanishes also, because we have an odd order of c for all indices i; j;
and k.

B. For the second integral we obtain (by using the j-th component of the vector)

Z

e�ˇc2
�

ˇcjckc2 � 5

2
cjck

�

d3c; (2.69)

where we pulled cj and ck into the brackets. We have to distinguish between the
cases j D k and j ¤ k.

Case j D k: In this case Eq. (2.69) becomes

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2j Cc2l Cc2m/




ˇ.c2j C c2l C c2m/c
2
j � 5

2
c2j

�

dcjdcldcm:

The first part of that integral becomes then

ˇ

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2j Cc2l Cc2m/.c4j C c2j c2l C c2j c2m/dcjdcldcm D 5

4

�3=2

ˇ5=2
:
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Note that while evaluating the integral we can set c2j c2l C c2j c2m D 2c2j c2l , since
both integrals provide the same result. The second part of the integral yields

�5
2

Z 1

�1

Z 1

�1

Z 1

�1
c2j e�ˇ.c2j Cc2l Cc2m/dcjdcldcm D �5

4

�3=2

ˇ5=2
:

By adding up both parts we obtain

Z

e�ˇc2
�

ˇcjckc2 � 5

2
cjck

�

d3c D 0:

Case j ¤ k: In this case Eq. (2.69) becomes

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2j Cc2kCc2l /




ˇ.c2j C c2k C c2l /cjck � 5

2
cjck

�

dcjdckdcl:

Obviously, this integral yields zero according to Eq. (2.44), since we have
odd orders of cj and ck under the integral.

Obviously, the second constraint is also fulfilled.

Third Constraint: ˛ D 2

A. In this case Eq. (2.65a) becomes

Z

e�ˇc2
�

c2cick � 1

3
c4ıik

�

d3c; (2.70)

where we have pulled the c2 into the brackets. Here we have to distinguish
between the cases i D k and i ¤ k.

Case i D k: In this case Eq. (2.70) becomes

Z

e�ˇc2
�

c2c2i � 1

3
c4
�

d3c D �1 C�2:

Let us consider both terms separately and we obtain for the first part

�1 D
Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2l Cc2m/.c4i C c2i c2l C c2i c2m/dcidcldcm:

Note that the integration of the terms containing c2i c2l and c2i c2m yield the same
result. Therefore we simplify the equation and obtain for the first term

�1 D
Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2l Cc2m/.c4i C 2c2i c2l /dcidcldcm:
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For the second part of the integral we consider first the expression c4 which
can be written as

.c2i C c2l C c2m/
2 D c4i C c4l C c4m C 2c2i c2l C 2c2i c2m C 2c2l c2m

D 3c4i C 6c2i c2l ;

where we used the fact, that the integrations over c4i ; c
4
l ; and c4m yield the same

result as well as the integrations over c2i c2l ; c
2
i c2m; and c2l c2m. The second part

of the integral can then be written as

�2 D �
Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2l Cc2m/

1

3
.3c4i C 6c2i c2l /dcidcldcm:

Since �1 D ��2 we find that �1 C �2 D 0 and therefore the integral
vanishes for i D k.

Case i ¤ k: In this case Eq. (2.70) becomes

Z 1

�1

Z 1

�1

Z 1

�1
e�ˇ.c2i Cc2kCc2l /.c2i C c2k C c2l /cick dcidckdcl D 0:

This integral vanishes also, since we have odd orders of ci and ck under the
integral.

With both results we find
Z

c2e�ˇc2
�

cick � 1

3
c2ıik

�

d3c D 0:

B. For the second integral we find

Z

e�ˇc2ck

�

ˇc4 � 5

2
c2
�

d3c D 0;

where we pulled c2 into the brackets. One can see immediately that this integral
vanishes, since we have always an odd order of ck under the integral.

By adding both results up we find that the third constraint is also fullfilled. All
results show that the first correction f1 to the Maxwell-Boltzmann distribution f0
indeed satisfies the above mentioned conditions (2.61).

Problem 2.14 Show that the terms / .1=T/@T=@xk in the pressure term of
Eq. (2.57) vanish identically.

Solution The first correction to the pressure term is given by

p1ij D m
Z

cicjf1d
3c:
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According to Eq. (2.57) the term of f1 that is proportional to / .1=T/@T=@xk is
given by

Qf1 D f0
�

ck

�

ˇc2 � 5

2

�
1

T

@T

@xk
:

Let’s consider both terms separately. Since the temperature and the scattering
frequency are independent of c we have

A W
Z 1

�1
cicjckc2e�ˇc2d3c D 0 (2.71a)

B W
Z 1

�1
cicjcke�ˇc2d3c D 0; (2.71b)

where we used the Maxwell-Boltzmann distribution function f0 from Eq. (2.63). We
consider first the integral of Eq. (2.71a).

A. Here we consider Eq. (2.71a). We have to distinguish between the following
cases: (a) i D j D k, (b) i D j ¤ k (it is an easy matter to show that i ¤ j D k
yields the same results) and (c) i ¤ j ¤ k and i ¤ k.

Case i D j D k: In this case Eq. (2.71a) becomes

Z 1

�1

Z 1

�1

Z 1

�1
c3i .c

2
i C c2l C c2m/e

�ˇ.c2i Cc2l Cc2m/dcidcldcm D 0:

This integral vanishes, since we have an odd order of ci under the integral in
each term, see Eq. (2.44).

Case i ¤ j D k: In this case Eq. (2.71a) becomes

Z 1

�1

Z 1

�1

Z 1

�1
cic

2
j .c

2
i C c2j C c2l /e

�ˇ.c2i Cc2j Cc2l /dcidcjdcl:

As before we have an odd order of ci under the integral in each term.
Therefore, the integral vanishes.

Case i ¤ j ¤ k and i ¤ k: In this case Eq. (2.71a) becomes

Z 1

�1

Z 1

�1

Z 1

�1
cicjck.c

2
i C c2j C c2k/e

�ˇ.c2i Cc2j Cc2k/dcidcjdck:

This integral vanishes also, since we have odd orders of ci, cj, and ck under
the integral in each term.
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B. For the second integral of Eq. (2.71b) we have to distinguish the same three
cases:

Case i D j D k: In this case Eq. (2.71b) becomes

Z 1

�1

Z 1

�1

Z 1

�1
c3i e�ˇ.c2i Cc2l Cc2m/dcidcldcm D 0;

since we have an odd order of ci under the integral.
Case i ¤ j D k: In this case Eq. (2.71b) becomes

Z 1

�1

Z 1

�1

Z 1

�1
cic

2
j e�ˇ.c2i Cc2j Cc2l /dcidcjdcl;

which will also vanish due to odd orders of ci under the integral.
Case i ¤ j ¤ k and i ¤ k: In this case Eq. (2.71a) becomes

Z 1

�1

Z 1

�1

Z 1

�1
cicjcke�ˇ.c2i Cc2j Cc2k/dcidcjdck;

which also vanishes due to odd orders of c under the integral.

By combining the results from part A and B we find indeed that the terms
proportional to .1=T/@T=@xk in the pressure term vanish identically.

Problem 2.15 Show that the heat flux vector is given by

qi D ��@T

@xi
with � D 5

2

nk2T

mv
:

Solution The heat flux vector can be calculated by

qi D m

2

Z

cic
2f1d

3c;

with the first order correction f1 given by Eq. (2.62), and the Maxwell-Boltzmann
distribution function f0 given by Eq. (2.63), with ˇ D m=.2kT/ and c D v � u.
Again, the integral operates only on the terms in rounded brackets

qi D � m

2�

n m

kT

Z

f0cic
2

�

cjck � 1

3
c2ıjk

�

d3c
@ui

@xk

C
Z

cic
2f0ck

�

ˇc2 � 5

2

�

d3c
1

T

@T

@xk

o
:

It can easily be seen that the first integral is

Z

f0cic
2

�

cjck � 1

3
c2ıjk

�

d3c D 0;
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since we find in each term odd orders of c, see Eq. (2.44). The heat flux is therefore,
given by

qi D � m

2�

1

T

@T

@xk

Z

cickc2f0

�

ˇc2 � 5

2

�

d3c:

As before, for i ¤ k this integral is zero, therefore we consider only the case i D k
and obtain

qi D �n

�
ˇ

�

�3=2 m

2�

1

T

@T

@xi

Z

c2i c2e�ˇc2
�

ˇc2 � 5

2

�

d3c;

where we substituted f0 by Eq. (2.63). Let us consider the first term of the sum. We
obtain

n

�
ˇ

�

�3=2
ˇ

m

2�

1

T

@T

@xi

Z

c2i c4e�ˇc2d3c D n
35

16

1

ˇ2
m

�T

@T

@xi
: (2.72)

For the second term we find

n
5

2

�
ˇ

�

�3=2 m

2�

1

T

@T

@xi

Z

c2i c2e�ˇc2d3c D n
25

16

1

ˇ2
m

�T

@T

@xi
: (2.73)

By subtracting Eq. (2.73) from Eq. (2.72) we find for the heat flux

qi D �n
35

16

1

ˇ2
m

�T

@T

@xi
� n

25

16

1

ˇ2
m

�T

@T

@xi
D �n

5

8

1

ˇ2
m

�T

@T

@xi
D �5

2

nk2T

m�

@T

@xi
;

where we used ˇ D m=2kT.

2.5 Application 1: Structure of Weak Shock Waves

The one-dimensional Rankine-Hugoniot conditions are given by

s Œ�� D Œ�u� � Œm�

s Œ�u� D �
�u2 C p

	

s Œe� D Œ.e C p/u� ;

(continued)
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where s D dx=dt is the speed of the discontinuity and e is the total energy
with

e � 1

2
�u2 C p


 � 1
D 1

2
�u2 C ��: (2.74)

Here, � D p=�.
�1/ is the expression for the internal energy. Since the Euler
equations are Galilean invariant, we may transform the Rankine-Hugoniot
conditions into a coordinate system moving with a uniform velocity such
that the speed of the discontinuity is zero, s D 0. The steady-state Rankine-
Hugoniot conditions can then be written as

�0u0 D �1u1 (2.75a)

�0u
2
0 C p0 D �1u

2
1 C p1 (2.75b)

.e0 C p0/u0 D .e1 C p1/u1: (2.75c)

If we let m D �0u0 D �1u1, we can distinguish between two classes of
discontinuities. If m D 0, the discontinuity is called a contact discontinuity
or slip line. Since u0 D u1 D 0, these discontinuities convect with the fluid.
From (2.75b) we observe that p0 D p1 across a contact discontinuity but in
general �0 ¤ �1. By contrast, if m ¤ 0, then the discontinuity is called a shock
wave. Since u0 ¤ 0 and u1 ¤ 0, the gas crosses the shock, or equivalently,
the shock propagates through the fluid. The side of the shock that comprises
gas that has not been shocked is the front or upstream of the shock, while the
shocked gas is the back of downstream of the shock.

Problem 2.16 Explicitly, derive the O."/ and O."2/ expansions of the Euler
equations (e.g., Eqs. (2.46a)–(2.46c)).

Solution The 1D Euler equations can be rewritten as

@ N�
@Nt C @

@Nx . N� Nu/ D 0

N�
�
@Nu
@Nt C Nu@Nu

@Nx
�

D � a2c0

V2

p

@Np
@Nx

@Np
@Nt C Nu@Np

@Nx C 
 Np@Nu
@Nx D 0;

where we introduced the dimensionless variables Nt D t=T; Nx D x=L; N� D �=�0; Np D
p=p0, and Nu D u=Vp. Here, T and L are a characteristic time and length scale
respectively, and Vp is a characteristic phase velocity. Also �0 and p0 are equilibrium
values for the density and pressure far upstream of any shock transition.
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By introducing fast and slow variables � D Nx � Nt and 	 D �Nt we find

@

@Nx D @�

@Nx
@

@�
D @

@�

@

@Nt D @	

@Nt
@

@	
C @�

@Nt
@

@�
D "

@

@	
� @

@�
: (2.76)

If we expand the flow variables about a uniform far-upstream background, we obtain

N� D 1C "�1 C "2�2 C : : :

Nu D "u1 C "2u2 C : : :

Np D 1C "p1 C "2p2 C : : :

A. Continuity Equation
For the continuity equation we find the general expression

�

"
@

@	
� @

@�

�
�
1C "�1 C "2�2 C : : :

�

C @

@�

��
1C "�1 C "2�2 C : : :

� �
"u1 C "2u2 C : : :

�	 D 0:

• Terms of order O."/:

�@�1
@�

C @u1
@�

D 0 ) �1 D u1: (2.77)

• Terms of order O."2/:

@�1

@	
� @�2

@�
C @u2
@�

C @�1u1
@�

D 0:

B. Momentum Equation
The general form of the momentum equation is given by

"
�
1C "�1 C "2�2 C : : :

� @

@	

�
"u1 C "2u2 C : : :

�

� �
1C "�1 C "2�2 C : : :

� @

@�

�
"u1 C "2u2 C : : :

�

C �
1C "�1 C "2�2 C : : :

� �
"u1 C "2u2 C : : :

� @

@�

�
"u1 C "2u2 C : : :

�

D � Na2c0



@

@�

�
1C "p1 C "2p2 C : : :

�
;

where we used Na2c0 D a2c0=V2
p .
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• Terms of order O."/:

@u1
@�

D Na2c0



@p1
@�

) u1 D Na2c0



p1: (2.78)

• Terms of order O."2/:

@u1
@	

� @u2
@�

� �1
@u1
@�

C u1
@u1
@�

D � Na2c0



@p2
@�
:

C. Energy Equation
The general form of the energy equation is given by

"
@

@	

�
1C "p1 C "2p2 C : : :

� � @

@�

�
1C "p1 C "2p2 C : : :

�

C �
"u1 C "2u2 C : : :

� @

@�

�
1C "p1 C "2p2 C : : :

�

C 

�
1C "p1 C "2p2 C : : :

� @

@�

�
"u1 C "2u2 C : : :

� D 0:

• Terms of order O."/:

�@p1
@�

C 

@u1
@�

D 0 ) p1 D 
u1: (2.79)

• Terms of order O."2/:

@p1
@	

� @p2
@�

C u1
@p1
@�

C 

@u2
@�

C 
p1
@u1
@�

D 0:

Problem 2.17 Derive the nonlinear wave equation

@u1
@	

C 
 C 1

2
u1
@u1
@�

D 0; (2.80)

which is called the inviscid form of Burgers’ equation.

Solution From the first order expansions of the Euler equations (see previous
Problem 2.16), we find the relations

�1 D u1 u1 D Na2c0



p1 p1 D 
u1: (2.81)
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From the last two relations it follows that Na2c0 D 1. For the second order equations,
O."2/, we find

�@�2
@�

C @u2
@�

D � @

@�
.�1u1/� @�1

@	
(2.82a)

�@u2
@�

C Na2c0



@p2
@�

D �1
@u1
@�

� @u1
@	

� u1
@u1
@�

(2.82b)

�@p2
@�

C 

@u2
@�

D �@p1
@	

� 
p1
@u1
@�

� u1
@p1
@�
: (2.82c)

Equation (2.82c) can be rewritten as

@p2
@�

D @p1
@	

C 
p1
@u1
@�

C u1
@p1
@�

C 

@u2
@�
:

Substituting this result into Eq. (2.82b) and setting Na2c0 D 1 we obtain

�@u2
@�

C 1




�
@p1
@	

C 
p1
@u1
@�

C u1
@p1
@�

C 

@u2
@�

�

D �1
@u1
@�

� @u1
@	

� u1
@u1
@�
;

which can be simplified to

1




@p1
@	

C p1
@u1
@�

C 1



u1
@p1
@�

D �1
@u1
@�

� @u1
@	

� u1
@u1
@�
:

Now we substitute p1 D 
u1 and �1 D u1 from Eq. (2.81) and obtain

@u1
@	

C 
u1
@u1
@�

C u1
@u1
@�

D u1
@u1
@�

� @u1
@	

� u1
@u1
@�
:

Finally, this can be simplified to

@u1
@	

C 
 C 1

2
u1
@u1
@�

D 0;

which is called the inviscid form of Burgers’ equation.

Problem 2.18 Solve the linear wave equation

@u

@t
C c

@u

@x
D 0; (2.83)

where c is a constant and the initial condition u.x; t D 0/ D f .x/. Write down the
solution if f .x/ D sin .kx/.
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Solution The initial curve at time t D 0 can be parameterized through

t D 0 x D x0 u.x; t D 0/ D f .x0/: (2.84)

The set of characteristic equations (see also Problem 2.3) and their solutions are
given by

dt

d	
D 1 t D 	 C const1 t D 	

dx

d	
D c x D c	 C const2 x D c	 C x0

du

d	
D 0 u D const3 u D f .x0/:

From the last equations it follows that u is constant along the characteristic curve
x0 D x � ct. In particular, x0 D x0.x; t/. The characteristics can be inverted and we
find u D f .x0/ D f .x � ct/. Together with f .x/ D sin .kx/ the solution is given by

u D sin .kx � ckt/ D sin .kx � !t/ ; (2.85)

where we used the dispersion ! D ck.

Problem 2.19 Consider the initial data

U.x; 0/ D
(
0 x � 0

1 x < 0
(2.86)

for the partial differential equation written in conservative form

@U

@t
C 1

2

@U2

@x
D 0:

Sketch the characteristics. What is the shock propagation speed necessary to prevent
the characteristics from crossing?

Solution First, we rewrite Burgers’ equation in the form

@U

@t
C U

@U

@x
D 0:

The set of characteristic equations is then given by

dt

ds
D 1

dx

ds
D U

dU

ds
D 0:
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From the last equation, dU=ds D 0, we find that U D const: along the
characteristics. In fact we have U D U0.x0/, where U0.x0/ D U.x; 0/ is given
by the initial data, Eq. (2.86). Since U is constant it follows that

dx

ds
D U D U0.x0/ H) x.s/ D U0.x0/s C x0:

And since dt=ds D 1, so that s D t, we find for the characteristic curve

x.t/ D U0.x0/t C x0 H) x.t/ D
(

x0 for x0 � 0

x0 C t for x0 < 0
;

where we used the initial conditions given in Eq. (2.86). The curves are shown in
Fig. 2.2. To prevent the characteristics from crossing, we introduce a shock with
propagating speed (valid for the inviscid Burgers’ equation)

s D
�
1
2
U2
	

ŒU�
D U0 C U1

2
D 1

2
;

with U0 D 0 and U1 D 1, and where s D .U0 C U1/=2 is the shock jump relation
for the inviscid Burgers’ equation, connecting the speed of propagation s of the
discontinuity with the amounts by which the velocity U jumps. Figure 2.3 shows
this case.
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Fig. 2.2 Shown are the characteristic curves. Apparently, the curves intersect
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Fig. 2.3 Shown are the characteristic curves with the shock speed s D 0:5

Problem 2.20 Starting from the stationary Rankine-Hugoniot conditions (2.75a)–
(2.75c), show that

m2 D �p0 � p1
	0 � 	1

;

where 	 � 1=�. Show also that e0	0 � e1	1 D p1	1 � p0	0 and hence that

�1 � �0 C p0 C p1
2

.	1 � 	0/ D 0;

(the Hugoniot equation for the shock) where � � p	=.
 � 1/.

Solution

A. We begin with Eq. (2.75b) and rewrite this equation as

�1u
2
1 � �0u20 D p0 � p1 H) �21u

2
1

�1
� �20u

2
0

�0
D p0 � p1;

where we multiplied each term on the left-hand side with 1 D �1=�1 D �0=�0.
Using now Eq. (2.75a) and letting �0u0 D �1u1 D m, we find immediately

m2



1

�1
� 1

�0

�

D p0 � p1 H) m2 D �p0 � p1
	0 � 	1

;
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where 	 D 1=�. Note that, since �u D m and thus 	 D u=m, we can rewrite the
expression as

m D �p0 � p1
u0 � u1

H) .u0 � u1/ D �p0 � p1
m

: (2.87)

B. We begin by rewriting the condition (2.75a) in the form u1 D u0�0=�1, so that
condition (2.75c) can be written as

.e0 C p0/u0 D .e1 C p1/u0
�0

�1
H) 	0.e0 C p0/ D 	1.e1 C p1/;

where we divided both sides by u0 and �0 and replaced 	 D 1=�. Reordering
the equation, we obtain

e0	0 � e1	1 D p1	1 � p0	0: (2.88)

C. We begin with the left-hand side of Eq. (2.88) and substitute

e D �� C 1

2
�u2 D

�

� C 1

2
u2
�
1

	
;

where 	 D 1=�, � is the internal energy, and e is the specific total energy (see
the introduction of this section). We obtain

�

�0 C 1

2
u20

�

�
�

�1 C 1

2
u21

�

D p1	1 � p0	0

�0 � �1 C 1

2

�
u20 � u21

� D p1	1 � p0	0

�0 � �1 C 1

2
.u0 � u1/ .u0 C u1/ D p1	1 � p0	0:

We substitute now .u0�u1/ by Eq. (2.87) and use u D m	 for the term .u0 C u1/,
and obtain

�0 � �1 � 1

2

p0 � p1
m

.m	0 C m	1/ D p1	1 � p0	0

�0 � �1 � p0 � p1
2

.	0 C 	1/ D p1	1 � p0	0

�0 � �1 � 1

2
p0	0 � 1

2
p0	1 C 1

2
p1	0 C 1

2
p1	1 D p1	1 � p0	0
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�0 � �1 C 1

2
p0	0 � 1

2
p0	1 C 1

2
p1	0 � 1

2
p1	1 D 0

�0 � �1 C 1

2
.p0 C p1/.	0 � 	1/ D 0;

which is the Hugoniot equation for a shock.

Problem 2.21 Show that the Cole-Hopf transformation

u D �2� �x

�
(2.89)

removes the nonlinear term in the Burgers’ equation

ut C uux D �uxx;

and yields the heat equation as the transformed equation. For the initial problem
u.x; t D 0/ D F.x/, show that this transforms to the initial problem

˚ D ˚.x/ D exp




� 1

2�

Z x

0

F.�/d�

�

; t D 0;

for the heat equation. Show that the solution for u is

u.x; t/ D
R1

�1
x��

t e�G=2�d�
R1

�1 e�G=2�d�
;

where

G.�I x; t/ D
Z �

0

F.�0/d�0 C .x � �/2

2t
:

Solution Note that the velocity u is a one-dimensional function of time and
space, thus u D u.x; t/. The Cole-Hopf transformation (2.89) introduces a function
� which is also a function of time and space, � D �.x; t/. To avoid any ambiguities
we define the initial condition at time t D 0 as ˚ D ˚.x/ D �.x; 0/.

A. With the Cole-Hopf transformation the derivatives of u with respect to t and x
are given by

ux D �2� ��xx � �2x
�2

; ut D �2� ��xt � �x�t

�2
;

uxx D �2� �xxx

�
C 6�

�x�xx

�2
� 4� �

3
x

�3
:
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Burgers’ equation becomes then

ut C uux � �uxx D ��xt

�
C �x�t

�2
C �

�xxx

�
� �

�x�xx

�2

D � .��xx � �t/x � �x .��xx � �t/ D 0:

Note that the expressions in both brackets are identical. For any non-trivial
solution of �, i.e., � ¤ 0, this equation is fulfilled if the term in brackets equals
zero, and thus

��xx D �t: (2.90)

Equation (2.90) is called the heat equation and we note that the Cole-Hopf
transformation reduces Burgers’ equation to the problem of solving the heat
equation.

B. By using Eq. (2.89) we find for the initial problem (setting t D 0, so that
�.x; 0/ D ˚.x/) the following ordinary differential equation

F.x/ D �2� �x.x; 0/

�.x; 0/
H) d˚.x/

˚.x/
D �F.x/

2�
dx;

where u.x; t D 0/ D F.x/. The general solution is given by

ln˚.x/� ln˚.0/ D � 1

2�

Z x

0

F.�/d�

˚.x/ D C exp




� 1

2�

Z x

0

F.�/d�

�

; (2.91)

where we used C D ˚.0/.
C. In order to solve Burgers’ equation we essentially need to solve the heat

equation (2.90) and transform the solution back according to the Cole-Hopf
transformation (2.89). Let us begin by rewriting the heat equation as

@�.x; t/

@t
D �

@2�.x; t/

@x2
� 1 < x < 1; 0 < t (2.92)

�.x; t D 0/ D ˚.x/ � 1 < x < 1:

with the initial profile ˚.x/ at time t D 0, given by Eq. (2.91). A very common
approach is to transform the function �.x; t/ into Fourier space

�.x; t/ D 1

2�

Z 1

�1
dk O�.k; t/eikx; O�.k; t/ D

Z 1

�1
dx �.x; t/e�ikx (2.93a)

˚.x/ D 1

2�

Z 1

�1
dk O̊ .k/eikx; O̊ .k/ D

Z 1

�1
dx ˚.x/e�ikx: (2.93b)
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where, O�.k; t/ and O̊ .k/ are the Fourier transforms of �.x; t/ and ˚.x/. By
substituting the Fourier transform of �.x; t/ into the heat equation (2.92) we
obtain

@ O�.k; t/
@t

D ��k2 O�.k; t/ k 2 R; 0 � t (2.94)

O�.k; 0/ D O̊ .k/ k 2 R:

For each constant wave mode k, the function O�.k; t/ fullfils the initial problem
with the initial condition O�.k; 0/ D O̊ .k/. The ordinary differential equa-
tion (2.94) can easily be solved,

@ O�.k; t/
O�.k; t/ D ��k2@t ) ln O�.k; t/ � ln O�.k; 0/ D ��k2t;

where we integrated from t D 0 to t. Since O�.k; 0/ D O̊ .k/ we find our solution

O�.k; t/ D O̊ .k/e��k2t: (2.95)

Now we transform this solution back into real space, using Eq. (2.93a),

�.x; t/ D 1

2�

Z 1

�1
dk O̊ .k/e��k2 teikx:

Substituting now the initial condition O̊ .k/ by Eq. (2.93b) we find

�.x; t/ D 1

2�

Z 1

�1
dx0 ˚.x0/

Z 1

�1
dk e�ikx0

e��k2teikx:

Note that we use the x0-coordinate for the back transformation of the initial
condition. The integral with respect to k is readily solved by (see Problem 2.27
for a detailed analysis of the integration)

K.x � x0/ D
Z 1

�1
e�ikx0

e��k2teikxdk D
r
�

�t
e� .x�x0 /2

4�t ; (2.96)

so that

�.x; t/ D 1

2�

Z 1

�1
dx0 ˚.x0/K.x � x0/; (2.97)
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where K.x � x0/ is the so-called heat kernel. Note that this integration is only
convergent for � > 0 and t > 0. Thus, we find the general solution

�.x; t/ D 1p
4��t

Z 1

�1
˚.x0/e� .x�x0/2

4�t dx0:

This solution is a convolution of the fundamental solution

 .x; t/ D 1p
4��t

exp




� x2

4�t

�

and the function ˚.x0/. Substituting ˚.x0/ by Eq. (2.91) we obtain

�.x; t/ D Cp
4��t

Z 1

�1
exp

"

� 1

2�

Z x0

0

F.�/d�� .x � x0/2

4�t

#

dx0:

The spatial derivative is then

�.x; t/x D � Cp
4��t

Z 1

�1
x � x0

2�t
exp

"

� 1

2�

Z x0

0

F.�/d�� .x � x0/2

4�t

#

dx0:

According to Eq. (2.89) the solution of Burgers’ equation is then

u.x; t/ D
R1

�1
x�x0

t exp
h
� 1
2�

R x0

0 F.�/d�� .x�x0/2

4�t

i
dx0

R1
�1 exp

h
� 1
2�

R x0

0
F.�/d�� .x�x0/2

4�t

i
dx0

: (2.98)

Problem 2.22 Show that the exponential solution of the characteristic form of the
steady Burgers’ equation admits a solution that can be expressed as a hyperbolic tan
(tanh) profile, given u.�1/ D u0 and u.1/ D u1.

Solution Burgers’ equation is given by

@u

@t
C u

@u

@x
D �

@2u

@x2

The steady state Burger’s equation can also be written as

d

dx



u2

2
� d

dx
.�u/

�

D 0 H) d

dx




u2 � 2�
du

dx

�

D 0:

where we multiplied by 2 and assumed that � is independent of x. Obviously, the
term in brackets has to be constant, and the dimensions of that constant are of the
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order velocity squared. Thus, we introduce the constant uc and have

u2 � 2�
du

dx
D u2c ;

where uc is a constant velocity that has to be determined by the boundary conditions.
We can rewrite that equation and obtain

Z

dx D
Z

du
2�

u2 � u2c
D �2�

u2c

Z

du
1

1� u2

u2c

D �2�
uc

Z

dy
1

1 � y2
;

where we used the substitution y D u=uc. According to Gradshteyn and Ryzhik [2],
Eq. (2.01–16), the integral can be solved by

x D �2�
u0

arctanh

�
u.x/

uc

�

C x0;

where x0 is an integration constant and u.x/ obeys the condition �uc < u.x/ < uc.
Solving this equation for u.x/ gives

u.x/ D �uc tanh
h
.x � x0/

uc

2�

i
;

where we used tanh.�a/ D � tanh.a/. Now it is clear that the integration constant x0
shifts the tanh.x/ by a distance x0 in the positive or negative x direction, depending
on the sign of x0. The constant 2�=uc has the dimension of a length. For convenience,
we introduce a characteristic length scale l D 2�=uc so that our solution is

u.x/ D �uc tanh
�x � x0

l



: (2.99)

Example: Shock. Here we consider the example of a shock located at x0 and a
background flow with the upstream velocity u0 D u.x D �1/ and the downstream
velocity u1 D u.x D C1/.

A. By using tanh.˙1/ D ˙1 and Eq. (2.99) we find the relations u0 D uc and
u1 D �uc, and therefore u0 D �u1. This also implies u.x D x0/ D 0, because
tanh.0/ D 0, which means, that the shock speed at the position of the shock
x0 is zero, thus u.x0/ D 0. However, in some cases one is rather interested in
u0 ¤ �u1. It is obvious that, in this case, we have to add a constant C ¤ 0 to
Eq. (2.99),

u.x/ D �uc tanh
�x � x0

l



C C; (2.100)
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to guarantee that u.x0/ ¤ 0. We find immediately from Eq. (2.100) that

u.x D �1/ D uc C C (2.101a)

u.x D x0/ D C (2.101b)

u.x D C1/ D �uc C C: (2.101c)

To specify the constant C we impose another boundary condition,

u.x D x0/ D u0 C u1
2

� C; (2.102)

which means, that at the shock position x0 the shock speed has decreased to the
constant arithmetic mean C D .u0 C u1/=2, which is zero only for u0 D �u1.
The constant uc is determined by Eqs. (2.101a) and (2.101c). Subtracting the
second equation from the first equation and dividing by 2 gives

uc D u0 � u1
2

:

Substituting C and uc back into Eq. (2.100) gives

u.x/ D u0 C u1
2

� u0 � u1
2

tanh
�x � x0

l



; (2.103)

which provides the correct results for the boundary conditions. In the case that
C D 0 and, thus, u0 D �u1 � ue we find the result as given by Eq. (2.99). As an
example, Fig. 2.4 shows the velocity profile (2.103) across a shock for u0 D 1

and u1 D 0:25 and the shock position x0 D 5.
B. The exponential solution of the characteristic form of Burgers’ equation is

given by

u D u0 C u1 � u0
e2z C 1

; where z D u1 � u0
4�

�

x � u0 C u1
2

t

�

: (2.104)

Note that the hyperbolic tangent can be expressed by

tanh z D 1 � 2

e2z C 1
:
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Fig. 2.4 Shown is the velocity profile for x0 D 5, u0 D 1 and u1 D 0:25

By expressing u0 D u0=2C u0=2 in Eq. (2.104) and adding a ‘zero’ in the form
of 0 D u1=2� u1=2, we obtain

u D u0
2

C u1
2

C u0
2

� u1
2

C u1 � u1
e2z C 1

D u0 C u1
2

C u0 � u1
2

� u0 � u1
e2z C 1

D u0 C u1
2

C u0 � u1
2




1 � 2

e2z C 1

�

D u0 C u1
2

C u0 � u1
2

tanh.z/:

This result is identical to Eq. (2.103).

2.6 Application 2: The Diffusion and Telegrapher Equations

Legendre’s differential equation is an ordinary differential equation, given by

0 D .1 � �2/dP2n.�/

d�2
� 2�

dPn.�/

d�
C n.n C 1/Pn.�/ (2.105a)

D d

d�




.1 � �2/
dPn

d�

�

C n.n C 1/Pn; (2.105b)

(continued)
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with n D 0; 1; 2; : : : . Solutions to this differential equation are called
Legendre polynomials, where each Legendre polynomial is an n-th degree
polynomial and can be determined by

Pn.�/ D F

�

n C 1;�n; 1I 1 � �

2

�

D 1

2nnŠ

dn
�
�2 � 1

�n

d�n
; (2.106)

where F.: : : / is the hypergeometric function. The last expression on the right
side is also called Rodrigues’ formula. The generating function is

L.�; t/ D 1
p
1 � 2�t C t2

D
1X

nD0
Pn.�/t

n; jtj < 1: (2.107)

An important relation is given by

Z 1

�1
Pn.�/Pm.�/d� D 2

2m C 1
ınm: (2.108)

Problem 2.23 Legendre polynomials Pn.�/ and Pm.�/ satisfy Legendre’s differ-
ential equation (2.105a). Show that for n ¤ m, the following orthogonality condition
holds,

Z 1

�1
Pn.�/Pm.�/d� D 0 for n ¤ m: (2.109)

Solution Using Eq. (2.105a), Legendre’s differential equation (for two Legendre
polynomials Pn and Pm) is described by

d

d�




.1 � �2/dPn

d�

�

C n.n C 1/Pn D 0

d

d�




.1 � �2/dPm

d�

�

C m.m C 1/Pm D 0;

where n ¤ m. Multiply now the first equation with Pm and the second with Pn, then
subtract the second from the first. We obtain

Œm.m C 1/� n.n C 1/�PmPn

D Pm
d

d�




.1 � �2/dPn

d�

�

� Pn
d

d�




.1� �2/
dPm

d�

�

D d

d�




.1 � �2/Pm
dPn

d�
� .1 � �2/Pn

dPm

d�

�

:
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It is easy to show that the last line equals the second. Now we integrate both sides
with respect to � and obtain

Œm.m C 1/� n.n C 1/�

Z 1

�1
PmPnd�

D
Z C1

�1
d

d�




.1 � �2/
�

Pm
dPn

d�
� Pn

dPm

d�

��

d�

D



.1 � �2/

�

Pm
dPn

d�
� Pn

dPm

d�

��C1

�1
D 0;

because the term .1 � �2/ vanishes for � D ˙1. For n ¤ m we have the
orthogonality condition given by Eq. (2.109).

Problem 2.24 The generating function for the Legendre polynomials is given by
Eq. (2.107). By differentiating the generating function with respect to t and equating
coefficients, derive the recursion relation

.n C 1/PnC1 C nPn�1 D .2n C 1/�Pn; n D 1; 2; 3; : : : :

Solution We consider the partial derivative of Eq. (2.107) with respect to t and
obtain

@L

@t
D � � t

.1 � 2�t C t 2/3=2
D

1X

nD0
nPntn�1:

By multiplying both sides with
�
1 � 2�t C t2

�
we find

� � t
p
1 � 2�t C t2

� .�� t/
1X

nD0
Pnt n D �

1 � 2�t C t2
� 1X

nD0
nPnt n�1;

where we used the definition of the generating function (2.107) for the first equality.
By expanding the parenthesis in front of both sums we find

1X

nD0
�Pnt n �

1X

nD0
Pnt nC1 D

1X

nD0
nPnt n�1 �

1X

nD0
2�nPnt n C

1X

nD0
nPnt nC1:

Compare now each coefficient with the same power of t. We find

�Pn � Pn�1 D .n C 1/PnC1 � 2�nPn C .n � 1/Pn�1:

Rearranging leads to the recursion relation

.n C 1/PnC1 C nPn�1 D .2n C 1/�Pn:
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Problem 2.25 By using the generating function and Problem 2.23 above, show that

Z 1

�1
P2n.�/d� D 2

2n C 1
: (2.110)

Solution By multiplying the generating function (2.107) with itself we obtain

1

1 � 2�t C t2
D
 1X

nD0
Pnt n

! 1X

mD0
Pmt m

!

D
1X

nD0

1X

mD0
PnPmt nCm;

where jtj < 1. By integrating with respect to � we find

Z 1

�1
1

1 � 2�t C t2
d� D

1X

nD0

1X

mD0

Z 1

�1
PnPmd� t nCm D

1X

nD0

Z 1

�1
P2nd� t 2n;

since we know from Problem 2.23 that
R 1

�1 PnPmd� D 0 for m ¤ n. Let us consider
now the left-hand side of that equation. By using ˛ D 1C t2 and x D �2�t we have

Z 1

�1
1

1 � 2�t C t2
d� D 1

2t

Z 2t

�2t

1

˛ C x
dx D 1

2t
Œln .˛ C x/�2t

�2t

D 1

2t
ln

�
˛ C 2t

˛ � 2t

�

D 1

2t
ln

�
1C 2t C t2

1 � 2t C t2

�

D 1

2t
ln

 �
1C t

1� t

�2
!

D 1

t
ln

�
1C t

1 � t

�

:

According to Gradshteyn and Rhyzhik [2], Eq. (1.513–1) the logarithm can be
written as an infinite sum

ln

�
1C t

1� t

�

D 2

1X

nD0

1

2n C 1
t2nC1 with jtj � 1:

Together with the factor 1=t we find for the left-hand side

Z 1

�1
1

1 � 2�t C t2
d� D

1X

nD0

2

2n C 1
t 2n D

1X

nD0

Z 1

�1
P2nd� t 2n:

By comparing the coefficients for each n we find

Z 1

�1
P2nd� D 2

2n C 1
:
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A basic problem in space physics and astrophysics is the transport or charged
particles in the presence of a magnetic field that is ordered on some large scale
and highly random and temporal on the other scales. We discuss a simplified
form of the Fokker-Planck transport equation that describes particle transport
via particle scattering in pitch angle in a magnetically turbulent medium since
it resembles closely the basic Boltzmann equation. In the absence of both
focusing and adiabatic energy changes, the BGK form of the Boltzmann
equation reduces to the simplest possible integro-differential equation

@f

@t
C �v

@f

@r
D h f i � f

	
; (2.111)

where f .r; t; v; �/ is a gyrophase averaged velocity distribution function at
position r and time t for particles of speed v and pitch-angle cosine� D cos 

with � 2 Œ�1; 1� and where

h f i D 1

2

Z 1

�1
fd�

is the mean or isotropic distribution function averaged over �.

Problem 2.26 Starting from Eq. (2.111) derive the infinite set of partial differential
equations

.2n C 1/
@fn
@t

C .n C 1/v
@fnC1
@r

C nv
@fn�1
@r

C .2n C 1/
fn
	

D f0
	
ın0 (2.112)

with n D 0; 1; 2; : : : .

Solution By expanding f D f .r; t; v; �/ in an infinite series of Legendre
polynomials Pn.�/,

f D 1

4�

1X

nD0
.2n C 1/Pn.�/fn.r; t; v/;

we can rewrite Eq. (2.111) as (neglecting the factor 1=4�)

1X

nD0
.2n C 1/Pn

@fn
@t

C �v

1X

nD0
.2n C 1/Pn

@fn
@r

C 1

	

1X

nD0
.2n C 1/Pn fn D 1

	

1

2

Z 1

�1

1X

nD0
.2n C 1/Pn fnd�:
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The right-hand side of that equation can be written as

1

	

1

2

Z 1

�1

1X

nD0
.2n C 1/Pn fn d� D 1

	

1

2

1X

nD0
.2n C 1/fn

Z 1

�1
PnP0d�;

where we included P0.�/ D 1 in the integral. With the orthogonality rela-
tion (2.108),

Z 1

�1
PnP0 d� D ın0

2

2n C 1
;

we find

1

	

1

2

Z 1

�1

1X

nD0
.2n C 1/Pn fnd� D 1

	

1X

nD0
fn.r; t; v/ın0 D f0

	
;

since the delta function contributes only for n D 0. The differential equation
reduces to

1X

nD0
.2n C 1/Pn

@fn
@t

C �v

1X

nD0
.2n C 1/Pn

@fn
@r

C 1

	

1X

nD0
.2n C 1/Pn fn D f0

	
:

With the recurrence relation .2n C 1/�Pn D .n C 1/PnC1 C nPn�1 we can rewrite
the second term and find

1X

nD0
.2n C 1/Pn

@fn
@t

C v

1X

nD0
.n C 1/PnC1

@fn
@r

C v

1X

nD0
nPn�1

@fn
@r

C 1

	

1X

nD0
.2n C 1/Pn fn D f0

	
:

Now we multiply the equation by Pm and integrate with respect to �,

1X

nD0
.2n C 1/

Z 1

�1
PmPn d�

@fn
@t

C v

1X

nD0
.n C 1/

Z 1

�1
PmPnC1d�

@fn
@r

C v

1X

nD0
n
Z 1

�1
PmPn�1 d�

@fn
@r

C 1

	

1X

nD0
.2n C 1/

Z 1

�1
PmPn d�fn

D f0
	

Z 1

�1
Pm d� D f0

	

Z 1

�1
P0Pm d�:
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With the orthogonality relation Eq. (2.108) we find

1X

nD0
.2n C 1/

2

2m C 1
ımn

@fn
@t

C v

1X

nD0
.n C 1/

2

2m C 1
ımnC1

@fn
@r

C v

1X

nD0
n

2

2m C 1
ımn�1

@fn
@r

C 1

	

1X

nD0
.2n C 1/

2

2m C 1
ımn fn

D f0
	

2

2m C 1
ım0:

Note that the second term contributes only for n D m � 1, while the third term
contributes only for n D m C 1. All other terms on the left side contribute only for
n D m, so that

@fm
@t

C v
2m

2m C 1

@fm�1
@r

C v
2.m C 1/

2m C 1

@fmC1
@r

C 1

	
fm D f0

	

2

2m C 1
ım0:

By multiplying this equation with .2m C 1/=2 and swapping the indices m $ n we
obtain Eq. (2.112).

Problem 2.27 Show that the integral

Z 1

�1
exp

��ˇ!2t � i˛!t � i!r
�

d! D
r
�

ˇt
exp

�

� .r C ˛t/2

4ˇt

�

: (2.113)

Solution The exponential function can be rewritten as

exp
��ˇ!2t � i˛!t � i!r

� D exp




�ˇt

�

!2 C i!
˛t C r

ˇt

��

D exp

"

�ˇt

�

! C i
˛t C r

2ˇt

�2
� .˛t C r/2

4ˇt

#

:

By substituting x D ! C i .˛t C r/ =2ˇt we obtain

Z 1

�1
exp

��ˇ!2t � i˛!t � i!r
�

d! D exp




� .˛t C r/2

4ˇt

� Z 1

�1
e�ˇtx 2dx

D
r
�

ˇt
exp




� .˛t C r/2

4ˇt

�

:



Chapter 3
Collisional Charged Particle Transport
in a Magnetized Plasma

3.1 The Kinetic Equation and Moments for a Magnetized
Plasma

The non-relativistic Boltzmann equation is given by Eq. (2.1), where the
particle-particle collisions are represented by the collision term .ıf=ıt/coll on
the right-hand side. Consider now a collisionless magnetized plasma, where
the collision term is zero. A prominent example for such a plasma is the
solar wind, which consists of protons, electron, ions, . . . . Charged particles
are primarily affected by electromagnetic fields, so that the collisionless
Boltzmann equation for a particle species a can be written as:

@fa
@t

C v � rfa C qa

ma
.E C v 
 B/ � rv fa D 0; (3.1)

where F D q .E C v 
 B/ is the Lorentz force. In the neighborhood of each
discrete charged particle, the fields can be large and dominate the macroscopic
large-scale fields. thus, E and B fluctuate strongly on short length scales
compared to the Debye length (which is the distance over which charged
carriers are screened). We take E and B to be the average of the actual electric
and mange fields over many Debye lengths, and the effects of the short-range
electromagnetic fluctuations or collisions will be included through a collision
operator

Ca. fa/ D ıfa
ıt

ˇ
ˇ
ˇ
coll
;

(continued)

© Springer International Publishing Switzerland 2016
A. Dosch, G.P. Zank, Transport Processes in Space Physics and Astrophysics,
Lecture Notes in Physics 918, DOI 10.1007/978-3-319-24880-6_3

137



138 3 Collisional Charged Particle Transport in a Magnetized Plasma

also called the Fokker-Planck operator, so that the Boltzmann equation (2.1)
can be written as

@fa
@t

C v � rfa C qa

ma
.E C v 
 B/ � rv f a D Ca. fa/: (3.2)

The collision operator

Ca D
X

b

Cab. fa; fb/ (3.3)

is a sum of the contributions from collisions with each particle species b,
including self-collisions a D b. Like the Boltzmann collision operator,
the number density, momentum, and energy moments of the Fokker-Planck
collisional operator must satisfy

Z

Cab. fa; fb/d
3v D 0 (3.4a)

Z

mavCab. fa; fb/d
3v D �

Z

mbvCba. fb; fa/d
3v (3.4b)

Z
1

2
mav

2Cab. fa; fb/d
3v D �

Z
1

2
mbv

2Cba. fb; fa/d
3v; (3.4c)

since the force a species a exerts on a species b must be equal and opposite to
that which species b exerts on species a, so that no net momentum or energy
change results from collisions. For b D a we have

Z

Caa. fa/d
3v D 0 (3.5a)

Z

mavCaa. fa/d
3v D 0 (3.5b)

Z
1

2
mav

2Caa. fa/d
3v D 0: (3.5c)

Any model collision operator has to satisfy these properties!
By taking moments of the kinetic equation (3.2), on can derive the fluid

equations (see Problem 3.1)

@n

@t
C r � .nu/ D 0 (3.6a)

(continued)
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@

@t
.mnu/C r � P D qn .E C u 
 B/C

Z

mvC. f /d3v (3.6b)

@

@t



1

2
mnu2 C 3

2
nkT

�

C r � Q D qnE � u C
Z
1

2
mv2C. f /d3v: (3.6c)

The right-hand sides of the fluid equations (3.6a)–(3.6c) contain the rate of
change of momentum and energy due to the electromagnetic fields and the
collisional transfer of momentum and energy via collisions to and from other
species, and may be expressed as

Z

mvC. f /d3v D R (3.7)

Z
1

2
mv2C. f /d3v D Q C R � u (3.8)

Note that the scalar Q describes the rate of thermal energy transfer and not the
heat flux vector Q (see below). R is the rate of transfer of momentum to the
particle species of interest due to collisions with other species in the plasma.

Problem 3.1 By taking moments of the kinetic equation (3.2), derive the fluid
equations (3.6a)–(3.6c).

Solution We begin with Eq. (3.2) and neglect the subscript a for convenience in
all following calculations. We calculate the zeroth, first, and second moment for the
continuity, momentum-, and energy conservation equations. In order to calculate the
moments we define

n h A i D
Z

A f d3v:

If we substitute A by 1; v; v2; v3; : : : we find for the first three moments

n D
Z

f d3v n h v i D nu D
Z

v f d3v n
˝
v2
˛ D

Z

v2 f d3v: (3.9)

A. Zeroth Moment. We integrate Eq. (3.2) with respect to velocity d3v and obtain

Z
@f

@t
d3v C

Z

v � rfd3v C
Z

q

m
.E C v 
 B/ � rvfd

3v D
Z

C. f /d3v:
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The time derivative in the first term can be pulled in front of the integral. The
nabla operator in the second term pertains to the spatial derivative and can also
be pulled in front of the integral. However, the integral in the third term includes
derivatives in velocity space, thus, the nabla operator cannot be pulled in front
of the integral. Instead, we have to use integration by parts,

q

m

Z

.E C v 
 B/ � rvfd
3v

D Œ f .E C v 
 B/�vD1
vD�1 �

Z

f rv � .E C v 
 B/ d3v:

The first term on the right-hand side is zero since any physical distribution
function vanishes for v ! ˙1. The electric and magnetic fields are functions
of x and t, but not of v. Thus, the nabla operator operates only on the .v 
 B/
term. It is an easy matter to show that rv � .v 
 B/ D 0, since the i-th component
of the remaining vector (after the cross-product) is independent of the velocity
in i-direction. Thus, the derivative with respect to velocity is zero. We obtain

@

@t

Z

fd3v C r �
Z

vfd3v D
Z

C. f /d3v:

With the moments expressed in Eqs. (3.9) and with
R

C. f /d3v D 0 we derive
the continuity equation

@n

@t
C r � .nu/ D 0:

B. First Moment. Here we multiply Eq. (3.2) with mv and integrate with respect
to d3v. For simplicity we consider the j-th component of the velocity vector. We
find

Z

mvj
@f

@t
d3v C

Z

mvjv � rfd3v

C
Z

qvj .E C v 
 B/rvfd
3v D

Z

mviC. f /d3v:

For convenience let us consider each term separately, beginning with the first
term on the left-hand side. As before, we can pull the time derivative in front of
the integral

@

@t

Z

mvjfd
3v D @

@t

�
mnuj

�
; (3.10)
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where we used the expressions in (3.9). For the second term we rewrite v � rf D
vk@f=@xk, where we used Einstein’s summation convention. The derivative is
independent of the integration and we can write

@

@xk

Z

mvjvkfd3v D @

@xk

�
mn

˝
vjvk

˛	 D @Pjk

@xk
D .r � P/j ; (3.11)

where we used the momentum flux tensor Pjk � mn
˝
vjvk

˛
(see [5] for more

information). Again, for the third term we use integration by parts and obtain

Z

qvj .E C v 
 B/ � rvfd
3v

D q
�

fvj .E C v 
 B/
	1

�1 � q
Z

f rv � �vj .E C v 
 B/
	

d3v:

The first term on the right-hand side is zero since the distribution function
vanishes as v ! ˙1. For the second term on the right-hand side we find

rv � �vj .E C v 
 B/
	 D @

@vi

�
vj .E C v 
 B/i

	 D .E C v 
 B/i
@vj

@vi

D .E C v 
 B/i ıij D .E C v 
 B/j

since the i-th component of .E C v 
 B/ is independent of vi and, therefore, the
derivative vanishes. We obtain

Z

qvj .E C v 
 B/ � rvfd
3v D �q

Z

f ŒE C v 
 B�j d3v

D �qEj

Z

fd3v � q


Z

.f v/ d3v 
 B
�

j

D �nq .E C u 
 B/j ; (3.12)

where the subscript j denotes the j-th component of that vector. Note that E and
B are independent of velocity v. By adding up Eqs. (3.10)–(3.12) and by using
the vector description instead of the j-th component, we find

@

@t
.mnu/C r � P D nq .E C u 
 B/C

Z

mvC. f /d3v;

the conservation of momentum.
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C. Second Moment. Here we multiply Eq. (3.2) with mv2=2 and integrate with
respect to d3v. We have

m

2

Z

v2
@f

@t
d3v C m

2

Z

v2v � rfd3v

C q

2

Z

v2 .E C v 
 B/ � rvfd
3v D

Z
1

2
mv2C. f /d3v:

Again, let us consider each term separately. The first term on the left-hand side
can be rewritten as

@

@t

m

2

Z

v2fd3v D @

@t

m

2
n
˝
v2
˛ D @

@t



1

2
mnu2 C 3

2
nkT

�

; (3.13)

where we used the fact, that the total energy is the sum of the kinetic energy
associated with the mean flow (the term proportional to u2) and the thermal
energy (the term proportional to T, see [5] for further information). In the second
term we can pull the nabla operator in front of the integral and find

r � m

2

Z

v2vfd3v D r � 1
2

mn
˝
v2v

˛ D r � Q (3.14)

with the heat flux vector Q D mn
˝
v2v

˛
=2. For the last term on the left-hand

side we have to apply integration by parts and obtain

q

2

Z

v2 .E C v 
 B/ � rvfd
3v

D q

2

�
fv2 .E C v 
 B/

	1
�1 � q

2

Z

f rv

�
v2 .E C v 
 B/

	
d3v:

The first term on the right-hand side is zero since the distribution function
vanishes as v ! ˙1. For the second term on the right-hand side we use

rv

�
v2 .E C v 
 B/

	 D rv

�
v2
	 � .E C v 
 B/C v2rv � Œ.E C v 
 B/�

D 2v � E:

As before, the second term on the right-hand side is zero. With rvv
2 D 2v and

v � .v 
 B/ D 0, because v ? .v 
 B/. We find

q

2

Z

v2 .E C v 
 B/ � rvfd
3v D �qE �

Z

vfd3v D �qnE � u: (3.15)



3.1 The Kinetic Equation and Moments for a Magnetized Plasma 143

By adding up Eqs. (3.13)–(3.15) we find

@

@t



1

2
mnu2 C 3

2
nkT

�

C r � Q D qnE � u C
Z
1

2
mv2C. f /d3v;

the conservation of energy.

Problem 3.2 Derive the momentum equation (3.16) and the energy equation (3.17)
from the conservation laws (3.6a)–(3.6c).

Solution We derive first the momentum equation and then the energy equation.

1. Momentum Equation. Let us start with Eq. (3.6b). With
R

mvC. f /d3v D R,
where R is the total force exerted on the particle of interest due to collisions with
other species in the plasma, we find for the j-th component of the momentum
conservation equation

@

@t

�
mnuj

�C @Pjk

@xk
D qn .E C u 
 B/j C Rj;

where we used .r � P/j D @Pjk=@xk; compare also with part B of the previous
Problem 3.1. For the momentum flux tensor we use

Pjk D pıjk C �jk C mnujuk;

so that the momentum conservation equation becomes

@

@t

�
mnuj

�C @p

@xj
C @�jk

@xk
C @

@xk

�
mnujuk

	 D qn .E C u 
 B/j C Rj:

In the next step we pull the two terms that include the pressure p and the viscosity
tensor �jk to the right-hand side. The mass m is independent of t and x. Since we
want to use the continuity equation for the remaining terms on the left-hand side
we derive

muj
@n

@t
C mn

@uj

@t
C muj

@

@xk
.nuk/C mnuk

@uj

@xk

D � @p

@xj
� @�jk

@xk
C qn .E C u 
 B/j C Rj:

Using the continuity equation, the first and the third term on the left-hand side
vanish and we obtain

mn

�
@uj

@t
C uk

@uj

@xk

�

D � @p

@xj
� @�jk

@xk
C qn .E C u 
 B/j C Rj:
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In rewriting this equation as a vector we obtain the momentum equation in terms
of the flow velocity,

mn

�
@u
@t

C .u � r/u
�

D �rp � r � � C qn .E C u 
 B/C R: (3.16)

2. Energy Equation. In the following we calculate the energy equation from the
conservation of energy (3.6c),

@

@t



1

2
mnu2 C 3

2
nkT

�

C r � Q D qnE � u C Q C R � u;

where we substituted
R
1
2
mv2C. f /d3v D Q C R � u. Note that Q describes the

rate of thermal energy transfer, whereas Q is the energy flux (see below). Let us
consider now each term separately and note that we use Einstein’s summation
convention for simplicity.

A. The first term on the left-hand side can be written as

@

@t



1

2
mnu2 C 3

2
nkT

�

D mnuj
@uj

@t
C m

2
u2
@n

@t
C 3

2
n
@kT

@t
C 3

2
kT
@n

@t
;

where the particle mass m is time-independent and @u2=@t D 2u � @u=@t.
B. For the second term on the left-hand side we find

r � Q D @qj

@xj
C 5

2

@

@xj

�
ujp
�C @

@xj

�
�jkuk

�C m

2

@

@xj

�
nu2uj

�
;

where we used the energy flux

Qi D qi C 5

2
uip C �ijuj C 1

2
mnu2ui:

Recall that the pressure p D nkT, so that the second term on the right-hand
side can be written as

5

2

@

@xj

�
ujp
� D 3

2

@

@xj

�
ujnkT

�C @

@xj

�
ujp
�

D 3

2
kT
@nuj

@xj
C 3

2
ujn
@kT

@xj
C uj

@p

@xj
C p

@uj

@xj
;
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where we used 5=2 D 3=2C 1. We obtain finally

r � Q D @qj

@xj
C 3

2
kT
@nuj

@xj
C 3

2
ujn
@kT

@xj
C uj

@p

@xj
C p

@uj

@xj

C uk
@�jk

@xj
C �jk

@uk

@xj
C m

2
u2
@nuj

@xj
C mnujuk

@uk

@xj
;

where we used uj@u2=@xj D 2ujuk@uk=@xj.
C. For the last term on the right-hand side we multiply Eq. (3.16) by u and

rearrange for R � u. We then obtain

R � u D mnuj

�
@uj

@t
C uk

@uj

@xk

�

C uj
@p

@xj
C uj

@�jk

@xk
� qnujEj:

Note that the term with the magnetic field vanishes, since u � .u 
 B/ D 0,
because u ? .u 
 B/ D 0.

The equation for energy conservation (3.6c) becomes then

mnuj
@uj

@t„ ƒ‚ …
2

C m

2
u2
@n

@t„ ƒ‚ …
4

C3

2
n
@kT

@t
C 3

2
kT
@n

@t„ ƒ‚ …
5

C@qj

@xj
C 3

2
kT
@nuj

@xj
„ ƒ‚ …

5

C3

2
ujn
@kT

@xj

C uj
@p

@xj
„ƒ‚…

3

Cp
@uj

@xj
C uk

@�jk

@xj
„ƒ‚…

6

C�jk
@uk

@xj
C m

2
u2
@nuj

@xj
„ ƒ‚ …

4

C mnujuk
@uk

@xj
„ ƒ‚ …

2

D qnujEj
„ƒ‚…

1

CQ C mnuj

�
@uj

@t
C uk

@uj

@xk

�

„ ƒ‚ …
2

C uj
@p

@xj
„ƒ‚…

3

C uj
@�jk

@xk„ƒ‚…
6

�qnujEj
„ ƒ‚ …

1

:

Note that the viscosity tensor � is symmetric, so that uj@�jk=@xk D uk@�jk=@xj

under the summation. We also find ujuk@uk=@xj D ukuj@uj=@xk. For convenience
we marked each term that cancels out. By using the continuity equation we find

3

2
n
@.kT/

@t
C @qj

@xj
C 3

2
ujn
@.kT/

@xj
C p

@uj

@xj
C �jk

@uk

@xj
D Q

or written as a vector

3

2
n

�
@.kT/

@t
C u � r.kT/

�

C pr � u D �r � q � � W ru C Q: (3.17)
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3.2 Markov Processes, the Chapman-Kolmogorov Equation,
and the Fokker-Planck Equation

Problem 3.3 Consider a coin tossing event. Suppose

X.tn/ � Xn D
nX

iD1
xi; (3.18)

where xi are given by C1 for a head and �1 for a tail.

A. Determine the sample spaces Cn of the random variable Xn for the first 5 tosses,
i.e., n D 1; 2; 3; 4; 5.

B. Determine the probability of all outcomes for each sample space! Interpret your
findings! (Hint: a table might be helpful.)

C. Explain what distribution function should be used and calculate the pdf of the
random variable Xn for the general case of n tosses.

Solution

A. The sample spaces of the random variable Xn for the first 5 tosses is given by

C1 D fc W c D �1; 1g
C2 D fc W c D �2; 0; 2g
C3 D fc W c D �3; 1; 1; 3g
C4 D fc W c D �4;�2; 0; 2; 4g
C5 D fc W c D �5;�3;�1; 1; 3; 5g :

B. Let us consider the first toss with n D 1. The sum X1 can be either �1 (for tail)
or C1 (for head). Both results have the same probability, namely 0:5. After 2
tosses the sum has the possible values X2 D �2 (TT), X2 D 0 (TH or HT), and
X2 D C2 (HH). Thus, the number of all possible outcomes is 4. There is only
one way to reach X2 D �2 or X2 D C2, so both results have the probability
0:25, but there are two ways to reach X2 D 0, thus the probability to get X2 D 0

is 0:5. Similar considerations can be made for n D 3; 4; 5; : : : and we obtain the
probabilities as shown in Table 3.1. Obviously, the form of this table resembles
Pascal’s triangle, where each entry can be described by the binomial coefficient

�
n
a

�

D nŠ

aŠ.n � a/Š
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Table 3.1 The schematic shows the probabilities for each outcome after
1–5 coin tosses

Steps n / Sum Xn �5 �4 �3 �2 �1 0 1 2 3 4 5

1 1
2

1
2

2 1
4

2
4

1
4

3 1
8

3
8

3
8

1
8

4 1
16

4
16

6
16

4
16

1
16

5 1
32

5
32

10
32

10
32

5
32

1
32

The table resembles Pascal’s triangle

C. Since there are only two possible outcomes for tossing a coin it is straightfor-
ward to use the binomial distribution function to describe this experiment,

f .a/ D
�

n
a

�

pa .1 � p/n�a ;

where n is the number of tosses, p D 0:5 is the probability of obtaining head (or
tail), and a D .n C Xn/=2 is the number of heads (or tails). Note that a ¤ Xn,
since the entry for the binomial coefficient in Pascal’s triangle always starts
with 0 and not with Xn D �1;�2; : : : . Note also that the outcome of Eq. (3.18)
is restricted by the number of tosses n in such a way that the sum Xn D n � 2i,
where i D 0; 1; 2; : : : ; n. That means, after 3 tosses the sum cannot yield zero.
The pdf is then given by

f .Xn/ D
�

n
nCXn
2

�
1

2n
;

for Xn D n � 2i, where i D 0; 1; 2; : : : ; n.

3.3 Collision Dynamics, the Rosenbluth Potentials,
and the Landau Collision Operator

Problem 3.4 Show that

˝
.�vy/

2
˛ab

�t
D
˝
.�vz/

2
˛ab

�t
D Lab

4�

Z
1

Vrel
fb.v

0/d3v0

and that

˝
.�vx/

2
˛ab

�t
D �

4

�

1C ma

mb

�2 � qaqb

2�"ma

�4 

1

r2min

� 1

�2D

� Z
fb.v0/
V5

rel

d3v0:
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Solution We recall that the velocity changes in x, y, and z direction are given by

�vx D
�

1C ma

mb

��
qaqb

2�"ma

�2
1

2r2V3
rel

�vy D qaqb

2�"ma

cos 


Vrelr

�vz D qaqb

2�"ma

sin 


Vrelr
:

The characteristic length Lab is given by Eq. (3.31), see Sect. 3.4 below. For the
average we apply the operator

˝
.�vi/

2
˛ab

�t
D
Z �D

rmin

Z 2�

0

Z

.�vi/
2rfb.v

0/Vreldrd
d3v0:

With that we find

˝
.�vy/

2
˛ab

�t
D
�

qaqb

2�"ma

�2 Z �D

rmin

Z 2�

0

Z
cos2 


V2
relr

2
rfb.v

0/Vreldrd
d3v0

D 1

4�

�
qaqb

"ma

�2 Z �D

rmin

dr

r

Z
fb.v0/
Vrel

d3v0

D Lab

4�

Z
fb.v0/
Vrel

d3v0;

where we used
R 2�
0 cos2 
d
 D � . Similarly we find for the z component

˝
.�vz/

2
˛ab

�t
D
�

qaqb

2�"ma

�2 Z �D

rmin

Z 2�

0

Z
sin2 


V2
relr

2
rfb.v

0/Vreldrd
d3v0

D 1

4�

�
qaqb

"ma

�2 Z �D

rmin

dr

r

Z
fb.v0/
Vrel

d3v0

D Lab

4�

Z
fb.v0/
Vrel

d3v0;

where we used
R 2�
0

sin2 
d
 D � . The velocity mean square displacements in y-
and z-direction are identical. For the x-component we find

˝
.�vx/

2
˛ab

�t
D
�

1C ma

mb

�2 � qaqb

2�"ma

�4 Z �D

rmin

Z 2�

0

Z
rfb.v0/Vrel

4r4V6
rel

drd
d3v0
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D �

2

�

1C ma

mb

�2 � qaqb

2�"ma

�4 Z �D

rmin

dr

r3

Z
fb.v0/
V5

rel

d3v0

D �

4

�

1C ma

mb

�2 � qaqb

2�"ma

�4 

1

r2min

� 1

�2D

� Z
fb.v0/
V5

rel

d3v0:

Problem 3.5 By direct substitution, show that the Landau collision operator (and
hence the other forms) satisfy the conservation laws

Z

Cab. fa; fb/d
3v D 0 (3.19a)

Z

mavCab. fa; fb/d
3v D �

Z

mbvCba. fb; fa/d
3v (3.19b)

Z
1

2
mav

2Cab. fa; fb/d
3v D �

Z
1

2
mbv

2Cba. fb; fa/d
3v: (3.19c)

Solution The Landau form of the collision operator is given by

Cab. fa; fb/ D K

ma

@

@vi

Z

Vij

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@vj

#

d3v0; (3.20)

where we used the constant K D ln�=8� .qaqb="0/
2 for simplicity and the tensor

Vij D V2
relıij � Vrel;iVrel;j

V3
rel

; (3.21)

with the vector Vrel D v � v0 and V3
rel D jv � v0j3 in the denominator. Keep in

mind that the tensor Vij depends on v and v0. In the following calculations we will
frequently use the substitution

T.v; v0/ D Vij

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@vj

#

; (3.22)

so that the Landau collision operator can be written as

Cab. fa; fb/ D K

ma

@

@vi

Z

T.v; v0/d3v0:

Note that the expression T.v; v0/ vanishes, if vi ! ˙1. This can easily be
seen in Eq. (3.22); the first term on the right-hand side vanishes because fa.vi D
˙1; vj; vk/ D 0, since any physical distribution function vanishes as v ! ˙1.
The second term in Eq. (3.22) also vanishes, since @fa.vi D ˙1; vj; vk/=@vj D 0,
for the same reason. Note that this is the derivative of the vj-component.
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A. For the first conservation law (3.19a) we have

Z

Cab. fa; fb/d
3v D K

ma

Z
@

@vi

Z

T.v; v0/d3v0d3v:

First, we swap the integrations with respect to v and v0, so that

Z

Cab. fa; fb/d
3v D K

ma

Z

d3v0
Z

dvidvjdvk
@

@vi
T.v; v0/:

In the next step we execute the integration with respect to vi and obtain

Z

Cab. fa; fb/d
3v D K

ma

Z

d3v0
Z

dvjdvk
�
T.v; v0/

	viD1
viD�1 D 0:

Since fa.vi D ˙1; vj; vk/ D 0 for any physical distribution function, we find
immediately that the zeroth order vanishes.

B. For the first moment (3.19b) we consider only the l-th component of the vector,
v ! vl. The left hand side of Eq. (3.19b) can then be written as

Z

mavlCab. fa; fb/d
3v D K

Z

d3v
Z

d3v0 vl
@

@vi
T.v; v0/:

By swapping the integrations with respect to v and v0 we obtain

Z

mavlCab. fa; fb/d
3v D K

Z

d3v0
Z

d3v vl
@

@vi
T.v; v0/:

Considering only the integral with respect to v we have to distinguish the
following two cases:

l ¤ i In this cases we can set either l D j or l D k. We choose here l D j so
that

Z

dvidvjdvk vj
@

@vi
T.v; v0/ D

Z

dvjdvk vj
�
T.v; v0/

	viDC1
viD�1 D 0:

l D i In this cases we find use integration by parts, so that

Z

d3v vi
@

@vi
T.v; v0/ D �

viT.v; v
0/
	viDC1
viD�1 �

Z

d3v T.v; v0/:

The first term on the right-hand side vanishes (see above), but the second
term remains.
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With that, the left side of the conservation law (3.19b) can be written as

Z

mavlCab. fa; fb/d
3v

D �K
Z

d3v0
Z

d3v Vij

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@vj

#

; (3.23)

where we substituted T.v; v0/ back into the equation. Similarly, we obtain for
the particle species b (just by exchanging a $ b and (!) v $ v0)

Z

mbvlCba. fb; fa/d
3v

D �K
Z

d3v0
Z

d3v Vij

"
fb.v0/

ma

@fa.v/

@vj
� fa.v/

mb

@fb.v0/
@v0

j

#

: (3.24)

Note that Vij is unchanged under the transformation v $ v0. By swapping the
terms in square brackets in Eq. (3.24) and by comparing with Eq. (3.23) we find
immediately the relation (3.19b).

C. The second moment is given by Eq. (3.19c) and can be written as

Z
1

2
mav

2Cab. fa; fb/d
3v D K

Z

d3v
Z

d3v0 1
2
v2

@

@vi
T.v; v0/:

Again, by swapping the integrations with respect to v and v0 we obtain

Z
1

2
mav

2Cab. fa; fb/d
3v D K

Z

d3v0
Z

d3v
1

2
v2

@

@vi
T.v; v0/:

Now we want to investigate only the integration with respect to v, bearing in
mind that v2 D v2x C v2y C v2z . The last integral becomes then

Z

d3v
1

2
v2

@

@vi
T.v; v0/ D

X

lDi;j;k

Z

d3v
1

2
v2l

@

@vi
T.v; v0/

D
X

lDi;j;k



1

2
v2l T.v; v0/

�viDC1

viD�1
�
Z

d3v vi T.v; v0/:

Note that the last term has no sum, since
P

l @v
2
l =@vi D 2vi. That means that

only the i-th component remains from that sum. Obviously, the first term on the
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right hand side vanishes as before and we are left with

Z
1

2
mav

2Cab. fa; fb/d
3v (3.25)

D �K
Z

d3v0
Z

d3v vi Vij

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@vj

#

;

where we substituted the integral and the function T.v; v0/ back into the expres-
sion. A similar expression can be found for particle species b by exchanging
a $ b and v $ v0 and we obtain

Z
1

2
mbv

2Cba. fb; fa/d
3v

D �K
Z

d3v0
Z

d3v v0
i Vij

"
fb.v0/

ma

@fa.v/

@vj
� fa.v/

mb

@fb.v0/
@v0

j

#

D K
Z

d3v0
Z

d3v v0
i Vij

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@vj

#

: (3.26)

Note that vi was also changed to v0
i . In the last step we simply changed the terms

in brackets to get rid of the minus sign in front of the expression and to find a
similar expression for particle species a. Now we simply add up Eqs. (3.25) and
(3.26) and obtain

Z
1

2
mav

2Cab. fa; fb/d
3v C

Z
1

2
mbv

2Cba. fb; fa/d
3v

D �K
Z

d3v0
Z

d3v
�
vi � v0

i

�
Vij

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@vj

#

:

Note that vi � v0
i D Vrel;i. Remember that we use Einstein’s summation

convention and that we therefore implicitly sum over all indices that appear
more than once. Obviously, the term

�
vi � v0

i

�
Vij is the only term that includes

the index i more than once. Therefore, we may sum this term over all spatial
coordinates, leading to (recall that Vrel;i D vi � v0

i and Vij is given by Eq. (3.21))

X

i

Vrel;iVij D 1

V3
rel

 
X

i

V2
relVrel;iıij � V2

rel;iVrel;j

!

D V2
rel

V3
rel

" 
X

i

Vrel;iıij

!

� Vrel;j

#

D 0; (3.27)
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where we used
P

i Vrel;iıij D Vrel;j in the first term on the right hand side andP
i V2

rel;i D V2
rel in the second term. It follows immediately that

Z
1

2
mav

2Cab. fa; fb/d
3v C

Z
1

2
mbv

2Cba. fb; fa/d
3v D 0

and, thus, the conservation law given by Eq. (3.19c).

Problem 3.6 By using the Landau form of the collision operator, show that
Cab. fa; fb/ D 0, if fa and fb are Maxwellian distributions with equal temperatures
Ta D Tb D T.

Solution The Landau form of the collision operator is given by Eq. (3.20).
Consider now fa and fb as Maxwellian distributions with

fa D na

�
ma

2�kBTa

�3=2
exp




� mav
2

2kBTa

�

;

fb D nb

�
mb

2�kBTb

�3=2
exp




� mbv
02

2kBTb

�

:

Note that the primed velocities pertain to fb. The derivations are then

@fa
@vj

D �mavj

kBTa
na

�
ma

2�kBTa

�3=2
exp




� mav
2

2kBTa

�

@fb
@v0

j

D �mbv
0
j

kBTb
nb

�
mb

2�kBTb

�3=2
exp




� mbv
02

2kBTb

�

:

For the expression in square brackets in Eq. (3.20) we find

"
fa.v/

mb

@fb.v0/
@v0

j

� fb.v0/
ma

@fa.v/

@v0
j

#

D nanb

kB

�
mamb

4�2k2BTaTb

�3=2
exp




� mav
2

2kBTa
� mbv

02

2kBTb

� 
vj

Ta
� v0

j

Tb

!

D nanb

kBT

�
mamb

4�2k2BT2

�3=2
exp




�mav
2

2kB
� mbv

02

2kBT

�
�
vj � v0

j

�
;

where we have set Ta D Tb D T in the first step. Note that Vrel;j D
�
vj � v0

j



.
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Substituting this expression back into Eq. (3.20) we obtain

Cab. fa; fb/ D ln�

8�ma

�
qaqb

"0

�2 nanb

kBT

�
mamb

4�2k2BT2

�3=2


 @

@vi

Z

exp




�mav
2

2kB
� mbv

02

2kBT

�

VijVrel;jd
3v0: (3.28)

Note that the expression under the integral is a sum over index j (using Einstein’s
summation convention). According to Eq. (3.27) we find that VijVrel;j D 0, thus, the
collision operator vanishes.

3.4 Electron-Proton Collisions

The Coulomb collision operator can be simplified if the colliding particles
move at very different speeds, such as electrons colliding with protons
moving at some average speed up. The scattering operator for electron-proton
scattering can therefore be expressed as the sum of the Lorentz scattering
operator L. fe/ and C1

ep (see [5]),

Cep. fe/ D �ep.v/

�

L. fe/ � mev � up

kTe
fMe

�

; (3.29)

where

�ep.v/ � npLep

4�v3
D npe4

4�m2
e�
2
0v
3

ln� (3.30)

is a velocity-dependent electron-proton collision frequency and the general
form

Lab D
�

qaqb

"ma

�2 Z �D

rmin

dr

r
D
�

qaqb

"ma

�2
ln�: (3.31)

where ln� is the Coulomb logarithm.
The first part of the collision operator (3.29) describes the collisions of

electrons with infinitely heavy stationary protons, implying that only the
electron direction and not the velocity changes in a collision. Consequently,
there is only diffusion in velocity space on a sphere of constant radius

(continued)
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v D constant, and the collision operator is spherically symmetric. Finally,
note that the proton mass is completely absent from the collision operator,
depending only on charge e. This makes it straightforward to model electron
collisions in a plasma comprising several different ion species.

Problem 3.7 How would the result (3.29) change if the electrons scattered off a
background of (A) ˛ particles (He—nuclei), and (B) a mixture of protons p and ˛
particles, as found in the solar wind emitted by the sun?

Solution

A. Since the collision operator depends only on the charge of the scattering centers
we find

Ce˛. fe/ D �e˛.v/

�

L. fe/� mev � u˛
kTe

fMe

�

; (3.32)

with the collision frequency

�e˛.v/ D 4n˛e4

4�m2
e�
2
0v

3
ln�; (3.33)

since qe D e and q˛ D 2e.
B. The general collision operator for multiple ion species is the sum over each

individual collision operator

Cei D
X

j

Cej D Cep C Ce˛:

Substituting Eqs. (3.29) and (3.32) we obtain

Cei D �ep.v/

�

L. fe/ � mev � up

kTe
fMe

�

C �e˛.v/

�

L. fe/� mev � u˛
kTe

fMe

�

:

Under the assumption that the protons and ˛-particles move with the same
background velocity up;˛ we can simplify this expression,

Cei D �ei.v/

�

L. fe/ � mev � up;˛

kTe
fMe

�

;
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where �ei.v/ D �
�ep.v/C �e˛.v/

	
. By collecting the collision frequencies for

protons and ˛-particles we find

�ei.v/ D
�
np C 4n˛

�
e4

4�m2
e�
2
0v

3
ln�:

By introducing an effective charge Zeff with

Zeff D
P

j njZ2j
P

j njZj
D
P

j njZ2j
ne

D np C 4n˛
ne

;

where we used the fact that for a quasineutral plasma
P

j njZj D ne, and that
Zp D 1 and Z˛ D 2, we find neZeff D np C 4n˛, so that the collision frequency
can be written as

�ei.v/ D neZeff e4

4�m2
e�
2
0v

3
ln�: (3.34)

3.5 Collisions with a Maxwellian Background

The Chandrasekhar function (Fig. 3.1) is defined as

G.x/ D f .x/ � xf 0.x/
2x2

; (3.35)

where f .x/ is the familiar error function,

f .x/ D 2p
�

Z x

0

e�z2dzI f 0.x/ D 2p
�

e�x2 I f 00.x/ D �2xf 0.x/: (3.36)

Problem 3.8 Show that the assumption of a Maxwell-Boltzmann distribution
function fb.v/ yields the solution to the partial differential equation

1

v2
@

@v

�

v2
@�b

@v

�

D fb.v/ as �0
b.v/ D mbnb

4�Tb
G

�
v

vT

�

; (3.37)

where G.x/ is the Chandrasekhar function (3.35) and �0
b is the Rosenbluth potential.
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Fig. 3.1 Shown is the Chandrasekhar function (3.35) in the interval Œ0; 5�

Solution The Maxwell-Boltzmann distribution function is given by

fb.v/ D nb

�
mb

2�kBTb

�3=2
exp




� mbv
2

2kBTb

�

D nb

�3=2v3T
exp




�v
2

v2T

�

; (3.38)

where we used vT D p
2kBTb=mb. The starting point is the differential equa-

tion (3.37). We multiply this equation by v2 and integrate with respect to v,

Z
@

@v

�

v2
@�b

@v

�

dv D
Z

v2fb.v/dv: (3.39)

Substituting fb on the right-hand side by the Maxwell-Boltzmann distribution
function (3.38) and executing the integral on the left-hand side we find (after
dividing by v2)

@�b

@v
� �0.v/ D nb

�3=2v3T

1

v2

Z

v2 exp




�v
2

v2T

�

dv:

Now, we substitute v D xvT and obtain

�0.x/ D nb

�3=2v2T

1

x2

Z

x2 exp
��x2

	
dx:
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Using integration by parts we obtain

�0.x/ D nbmb

2�3=2kBTb

1

x2


p
�

4
f .x/� x

2
e�x2

�

;

where f .x/ is the error function. With f 0.x/ D x expŒ�x2�=2 being the derivative of
the error function (3.36), we can rewrite this expression as

�0.v/ D nbmb

4�kBTb

f .x/� xf 0.x/
2x2

D nbmb

4�kBTb
G.x/;

where we used the definition of the Chandrasekhar function (3.35).

Problem 3.9 By using the definitions

�ab
D .v/ D �2Lab

v3
 0

b.v/; �ab
k .v/ D �2Lab

v2
 00

b .v/

with the characteristic length Lab given by Eq. (3.31) and the relation r2
v b D �b in

spherical velocity-space coordinates, derive the collision frequencies

�ab
D .v/ D N�ab

f .xb/� G.xb/

x3a
and �ab

k .v/ D 2 N�ab
G.xb/

x3a
;

where G.xb/ is the Chandrasekhar function (3.35) and

N�ab � nbq2aq2b ln�

4�"2m2
av
3
Ta

:

Solution

A. We start with the definition for �ab
k .v/ and obtain

�ab
k .v/ D �2Lab

v2
 00

b .v/ D nb

8�

2Lab

v2
d

dv
Œ f .xb/� G.xb/� ;

where we used the definition  0
b.v/ D �nb=8� Œ f .xb/� G.xb/�, see [5]. By

using v D xbvTb we find d=dv D .1=vTb/d=dxb and we can substitute

�ab
k .v/ D nb

4�

Lab

v2
1

vTb

d

dxb




f .xb/� f .xb/

2x2b
C f 0.xb/

2xb

�

D nb

4�

Lab

v2
1

vTb






f 0.xb/� 2x2bf 0.xb/� 4xbf .xb/

4x4b
C 2xbf 00.xb/� 2f 0.xb/

4x2b

�

:
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In the first step we substituted the Chandrasekhar function G.xb/ by Eq. (3.35).
In the last step we calculated the derivative of the expression in squared brackets.
By simplifying we obtain

�ab
k .v/ D nb

4�

Lab

v2
1

vTb




f 0.xb/C f 00.xb/

2xb
C f .xb/

x3b
� f 0.xb/

x2b

�

:

Since f 00.xb/ D �2xbf 0.xb/, see Eq. (3.36), we find that the first two terms in the
square brackets cancel. We obtain then

�ab
k .v/ D nb

4�

Lab

v2
1

vTb

2

xb



f .xb/� xbf 0.xb/

2x2b

�

D 2
nb

4�

Lab

v3
G.xb/:

With v D xavTa and the definition of Lab (3.31) we find

�ab
k .v/ D 2

nb

4�

�
qaqb

"ma

�2
ln�

1

x3v3Ta

G.xb/ D 2 N�ab
G.xb/

x3a
: (3.40)

B. Let us now consider now �ab
D .v/ with

�ab
D .v/ D �2Lab

v3
 0

b.v/ D nb

4�

Lab

v3
Œ f .xb/ � G.xb/� ;

where we used again the definition 0
b.v/ D �nb=8� Œ f .xb/� G.xb/�. With v D

xavTa and the definition of Lab (3.31) we find

�ab
D .v/ D nb

4�

�
qaqb

"ma

�2
ln�

1

v3Ta

f .xb/ � G.xb/

x3a
D N�ab

f .xb/� G.xb/

x3a
:

3.6 Collision Operator for Fast Ions

Problem 3.10 Suppose that energetic particles are introduced as an isotropic
distribution with speed U at a rate � per unit volume. Since the energetic particles are
isotropically distributed in velocity space, the kinetic equation may be expressed as

@f˛
@t

D 1

v2	s

@

@v

��
v3 C v3c

�
f˛.v/

	C �
ı.v � U/

4�U2
: (3.41)
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Subject to the boundary condition f˛.v > U/ D 0, show that the steady-state
energetic particle distribution function is given by

f˛.v/ D �	s

4�
�
v3 C v3c

� for v < U:

(Hint: Choose appropriate integration limits a and b, so that the velocity of the
energetic particles U lies in the interval Œa; b�.)

Solution In the steady state case we have @f˛=@t D 0. In this case Eq. (3.41)
becomes an ordinary differential equation,

d

dv

��
v3 C v3c

�
f˛.v/

	 D � �	s

4�U2
v2ı.v � U/:

Integrating this expression gives
Z v

1

v

d

dv0
�
v03 C v3c

�
f˛.v

0/dv0 D � �	s

4�U2

Z v
1

v

v02ı.v0 � U/dv0:

We changed the integration variable from v ! v0, since we want to denote the lower
integration limit with v. The integration limits are then chosen in such a way that
v < U < v1. We can now easily integrate the right-hand side and obtain U2. For
the left-hand side we integrate by parts and obtain

�
v31 C v3c

�
f˛.v1/� �

v3 C v3c
�

f˛.v/ D ��	s

4�
:

Since v1 > U, it follows f˛.v1/ D 0 due to the boundary condition. Thus, we
obtain

f˛.v/ D �	s

4�
�
v3 C v3c

� for v < U:

3.7 Transport Equations for a Collisional Electron-Proton
Plasma

By considering a plasma comprising electron and protons only we may
develop a transport theory in the presence of proton-proton, electron-proton,
and electron-electron collisions. Since the electrons do not collide with
a stationary background, we need to transform the kinetic equation for
each species a to a coordinate frame moving with the mean or bulk flow
velocity ua.r; t/ of each species. This requires the coordinate transformation

(continued)
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.x; v; t/ ! .x; ca; t/, where ca D v � ua. The dominant time scales are those
associated with the collision frequency and the gyrofrequency. For electrons,
we can order the kinetic equation as (see [5])

Cee. fe/C C0
ep. fe/C

�
e

me
ce 
 B

�

� rce fe D @fe
@t

C ue � rfe C ce � rfe

�



e

me
E0 C

�
@

@t
C ue � r

�

ue

�

rce fe0 � c0
aj

@uek

@xj

@fa
@cek

� C1
ep. fe/;

where the higher order correction to the collision operator has been included
on the right-hand side because it acts more slowly than the leading order term.

Following the Chapman-Enskog expansion procedure (see also Sect. 2.4),
we solve this equation by expanding the distribution function as fe D fe0 C
fe1 C : : : . To the lowest order, the left-hand side must vanish, which requires
the distribution function to be a Maxwell-Boltzmann distribution at rest in the
moving frame (see also Eq. (2.36) in Sect. 2.3)

fe0 D ne

�
me

2�kTe

�3=2
exp

�

� me

2kTe
v2
�

D ne

�
ˇ

�

�3=2
e�ˇv2 ;

with ˇ D me=2kTe. On using the zeroth order solution on the right-hand side
we obtain an equation for the next order solution fe1,

Cee. fe1/C C0
ep. fe1/C

�
e

me
v 
 B

�

� rv fe1 D
�
@

@t
C ue � r

�

ln nefe0

C
�

ˇv2 � 3

2

��
@

@t
C ue � r

�

ln kTefe0 C v � r ln nefe0

C
�

ˇv2 � 3

2

�

v � r ln kTefe0 C mev

kTe
�



e

me
E0 C

�
@

@t
C ue � r

�

ue

�

fe0

C mevjvk

kTe

@uek

@rj
fe0 C �ep

mev � .ue � up/

kTe
fe0; (3.42)

where, for notational convenience, we have written v for ce. It is convenient
to make use of the convective derivative (see also Eq. (2.48) in Problem 2.10),

D

Dt
D @

@t
C ue � r: (3.43)

Note that the last term on the right hand side of Eq. (3.42), the term
proportional to �ep, corresponds to �C1

ep (see [5]). By pulling this term to

(continued)
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the left hand side and by using Cep. fe1/ D C0
ep C C1

ep, we obtain

Cee. fe1/C Cep. fe1/C
�

e

me
v 
 B

�

� rv fe1 D D ln ne

Dt
fe0

C
�

ˇv2 � 3

2

�
D ln kTe

Dt
fe0 C v � r ln nefe0 C

�

ˇv2 � 3

2

�

v � r ln kTefe0

C mev

kTe
�



e

me
E0 C Due

Dt

�

fe0 C mevjvk

kTe

@uek

@rj
fe0: (3.44)

Also note that we used a Chapman-Enskog expansion to derive Eq. (3.44),
which gives the following constraints for the first order correction fe1 to the
Maxwell-Boltzmann distribution fe0:

Z

fe1 d3v D 0

Z

vfe1 d3v D 0

Z

v2fe1 d3v D 0: (3.45)

The velocity is given by v2 D v2x C v2y C v2z D P
v2i . We recall from

Problem 2.12 that
Z 1

�1
xne�ˇx2dx D 0 for n D 1; 3; 5; : : : (3.46)

For even functions under the integral we have

Z 1

�1
e�ˇx2dx D

r
�

ˇ

Z 1

�1
x2e�ˇx2dx D

p
�

2ˇ3=2

Z 1

�1
x4e�ˇx2dx D 3

p
�

4ˇ5=2

Z 1

�1
x6e�ˇx2dx D 15

p
�

8ˇ7=2
: (3.47)

In the following we will make frequent use of

Z

fe0 d3v D ne

�
ˇ

�

�3=2 Z

e�ˇv2d3v D ne (3.48)

Z

v2i fe0 d3v D ne

�
ˇ

�

�3=2 Z

v2i e�ˇv2d3v D ne

2ˇ
(3.49)

Z

v4i fe0 d3v D ne

�
ˇ

�

�3=2 Z

v4i e�ˇv2d3v D 3ne

4ˇ2
; (3.50)

where d3v D dvidvjdvk and the integration is taken from �1 to 1.
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Problem 3.11 Show that integrating Eq. (3.44) over velocity space yields the
continuity equation

@ne

@t
C r � .neue/ :

Solution Starting with Eq. (3.44) we take the zeroth moment, i.e., we integrate
this equation with respect to velocity v. For convenience we consider each term
separately.

A. The first term on the left-hand side is given by

Z

Cee. fe1/d
3v D 0;

since the collision operator for particles of the same species has to satisfy this
condition. See also Eq. (3.5a) in Sect. 3.1 and compare with Sect. 4.1 in [5].

B. The second term on the left-hand side is
Z

Cep. fe1/d
3v D 0;

since the collision operator for electron-ion collisions has to satisfy this relation.
Compare with Eq. (3.19a) in Problem 3.5. See also Sect. 4.1 in [5].

C. The third term on the left-hand side gives

Z

.v 
 B/ � rv fe1 d3v D
Z

dvidvjdvk�ijkvjBk
@fe1
@vi

D �ijk

Z

dvjdvk




vjBkf jviDC1
viD�1 �

Z

dvi
@vjBk

@vi

�

D 0;

where we neglected the constant e=me. Note that i; j; k are mutually distinct. In
the first step we used Einstein’s summation convention (summation over i), and
expressed the crossproduct by .v 
 B/i D �ijkvjBk, where �ijk is the Levi-Civita
tensor. In the second step we integrated by parts, where the first term vanishes
because any physical distribution function f vanishes for vi D ˙1. The second
term on the right-hand side is zero, since Bk does not depend on the velocity
and @vj=@vi D 0 because i ¤ j, or, in other words, the �ijk tensor is zero for
repeated indices. As a vector description one can also write rv � .v 
 B/ D 0

(see also Problem 3.1 A, the derivation of the zeroth moment of the Fokker-
Planck equation).
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D. The first term on the right-hand side is given by (using the convective derivative)

�
@ ln ne

@t
C ue � r ln ne

�Z

fe0 d3v D @ne

@t
C ue � rne;

where we used Eq. (3.48) and @ ln ne=@t D .1=ne/@ne=@t.
E. The second term on the right-hand side is given by

Z �

ˇv2 � 3

2

�

fe0 d3v D ˇ

Z

v2fe0 d3v � 3

2

Z

fe0 d3v

D ˇ

�
ne

2ˇ
C ne

2ˇ
C ne

2ˇ

�

� 3ne

2
D 0;

where we neglected the convective derivative D ln kTe=Dt, and used Eq. (3.49)
with v2 D v2x C v2y C v2z for the evaluation of the integrals.

F. For the third, fourth, and fifth term on the right-hand side we find

Z 


v � r ln ne C
�

ˇv2 � 3

2

�

v � r ln kTe

Cmev

kTe
�
�

e

me
E0 C Due

Dt

��

fe0 d3v D 0:

The integral is zero, since the function under the integral is odd in v, see
Eq. (3.46).

G. For the sixth term on the right-hand side we find for j D k,

@uej

@rj

me

kTe

Z

v2j fe0 d3v D @uej

@rj

me

kTe

ne

2ˇ
D ner � ue;

where we used ˇ D me=2kTe. Obviously, for j ¤ k the integral is zero.

By adding up all results we find the continuity equation

@ne

@t
C ue � rne C ner � ue D @ne

@t
C r � .neue/ D 0;

which shows that the convective derivative can be replaced by

D ln ne

Dt
D �r � ue: (3.51)
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Problem 3.12 Show that the first moment of Eq. (3.44) yields the momentum
equation (3.16) from Problem 3.2 without the viscous term (the term including the
viscosity tensor �), and that

�
@

@t
C ue � r

�

ue C eE0

me
D Re � r .nekTe/

mene
: (3.52)

Solution In this case we multiply Eq. (3.44) with v and integrate with respect to
v. For simplicity we consider here only the i-th component of the vector, i.e., vi. We
also use the results from the previous problem.

A. The first term on the left-hand side is given by

Z

viCee. fe1/d
3v D 0;

since the collision operator for particles of the same species has to satisfy
this condition. See also Eq. (3.5b) in Sect. 3.1 and compare with the previous
Problem 3.11!

B. The second term on the left-hand side is given by

Z

vCep. fe1/ d3v D Re

me
:

See Eq. (3.7) in Sect. 3.1 and compare with Sect. 4.1 in [5].
C. The third term on the left-hand side is given by

e

me

Z

vi Œ.v 
 B/ � rvfe1� d
3v D e

me

Z

vi�lmnvmBn
@fe1
@vl

d3v;

where we used .v 
 B/l D �lmnvmBn and Einstein’s summation conven-
tion, i.e., summation over index l. In the following we consider the cases
i D m; i D n; i D l.

• For i D m we have

�lin
eBn

me

Z 1

�1
dviv

2
i

Z 1

�1
dvn

Z 1

�1
dvl
@fe1
@vl

D �lin
eBn

me

Z 1

�1
dviv

2
i

Z 1

�1
dvn Œ fe1�

vlDC1
vlD�1 D 0;

since any physical distribution function has to vanish as vl ! ˙1.
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• For i D n we have similarly

�lmi
eBn

me

Z 1

�1
dvmvm

Z 1

�1
dvivi

Z 1

�1
dvl
@fe1
@vl

d3v

D �lmi
eBn

me

Z 1

�1
dvmvm

Z 1

�1
dvivi Œ fe1�

vlDC1
vlD�1 D 0:

• For i D l, however, we find

�imn
eBn

me

Z 1

�1
dvmvm

Z 1

�1
dvn

Z 1

�1
dvivi

@fe1
@vi

d3v

D �imn
eBn

me

Z 1

�1
dvmvm

Z 1

�1
dvn




.fe1vi/
1
�1 �

Z 1

�1
dvife1

�

D ��imn
eBn

me

Z

d3v vmfe1 D 0;

where we used .fe1vl/
1
�1 D 0 in the second line and relation (3.45) in the

last line.

D. The first term on the right-hand side is given by

�
@ ln ne

@t
C ue � r ln ne

�Z

vife0 d3v D 0;

since the function under the integral is odd with respect to v.
E. The second term on right-hand side is given by

D ln kTe

Dt

Z �

ˇv2 � 3

2

�

vife0 d3v D 0;

since the function under the integral is odd with respect to v, and where we again
used the convective derivative.

F. The third term on right-hand side is given by

Z

vi Œv � r ln ne� fe0 d3v D @ ln ne

@rk

Z

vivkfe0 d3v;

where we used Œv � r ln ne� D vk@ ln ne=@rk and where we used Einstein’s
summation convention, i.e., summation over index k. For i ¤ k this integral
is zero. For i D k we have
Z

vi Œv � r ln ne� fe0 d3v D 1

ne

@ne

@ri

Z

v2i fe0 d3v D 1

2ˇ

@ne

@ri
D kTe

me
Œrne�i ;
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where we used Eq. (3.49). Note that we do not sum over i, since we consider the
i-th component of the vector v. It is rather that the summation over k contributes
only if k D i, i.e., all terms of the summation over k are zero, except the term
that has the same index as the vector component.

G. The fourth term is given by

Z

vi

�

ˇv2 � 3

2

�

Œv � r ln kTe� fe0 d3v

D
Z

vi

�

ˇv2 � 3

2

�

vk
@ ln kTe

@rk
fe0 d3v

D 1

Te

@Te

@rk

Z

vivk

�

ˇv2 � 3

2

�

fe0 d3v;

where Œv � r ln kTe� D vk@ ln kTe=@rk and where we used Einstein’s summation
convention, i.e., summation over k. Note that @ ln kTe=@rk D 1=Te@Te=@rk is
independent of v and can be pulled in front of the integral. With v2 D v2x Cv2y C
v2z this integral is obviously zero for i ¤ k, since the function under the integral
is odd in v. The integral only contributes for i D k. For convenience we consider
both terms in brackets separately. The first term gives

ˇ

Te

@Te

@ri

Z

v2i v
2fe0 d3v D ˇ

Te

@Te

@ri

Z Z Z

v2i
�
v2i C v2j C v2z

�
fe0 dvidvjdvk

D ˇ

Te

@Te

@ri



3

4

ne

ˇ2
C ne

4ˇ2
C ne

4ˇ2

�

D 5

2

ne

me
ŒrkTe�i ;

where we used Eqs. (3.47)–(3.50). The Boltzmann constant k was pulled under
the derivative. The second term in the brackets gives

�3
2

1

Te

@Te

@ri

Z

v2i fe0 d3v D �3
2

1

Te

@Te

@ri

ne

2ˇ
D �3

2

ne

me
ŒrkTe�i ;

so that we eventually get

Z

vi

�

ˇv2 � 3

2

�

Œv � r ln Te� fe0 d3v D ne

me
ŒrkTe�i :

H. The fifth term is given by

me

kTe



e

me
E0 C Due

Dt

�

k

Z

vivkfe0 d3v D me

kTe
Ak

Z

vivkfe0 d3v;
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where the vector A corresponds to the expression in the brackets,

A D



e

me
E0 C

�
@

@t
C ue � r

�

ue

�

; (3.53)

so that the k-th component is given by Ak. For i ¤ k the integral is zero, since
the integral is odd in v. For i D k we find

me

kTe
Ai

Z

v2i fe0 d3v D me

kTe
Ai

ne

2ˇ
D Aine:

I. The sixth term gives

@uek

@rj

me

kTe

Z

vivjvkfe0 d3v D 0

for all combinations of i; j; k, since the integral is odd in v.

By adding up all results we find

Re

me
D kTe

me
rne C ne

me
rkTe C



e

me
E0 C

�
@

@t
C ue � r

�

ue

�

ne:

The first and second term on the right-hand side can be simplified to r.nekTe/ and
we find Eq. (3.52).

Problem 3.13 Show that the second moment of Eq. (3.44) yields the energy
equation (3.17) without the heat conduction (the term including r � q), viscous
heating (� W ru), and energy exchange terms (Q), and hence that

3

2

�
@

@t
C ue � r

�

ln kTe C r � ue D 0:

Solution Here we multiply Eq. (3.44) with v2 and integrate with respect to v.
We consider each term separately.

A. The first term on the left-hand side is given by

Z

v2Cee. fe1/d
3v D 0;

since the collision operator for particles of the same species has to satisfy
this condition. See also Eq. (3.5c) in Sect. 3.1 and compare with the previous
Problem 3.11!
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B. The second term of the left-hand side is given by

Z

v2Cep. fe1/ d3v D 0:

The scattering between electrons and protons is perfectly elastic, therefore, no
transfer of momentum or energy is possible. Thus, the terms Q and R in Eq. (3.8)
are zero.

C. The third term on the left-hand side is given by

e

me

Z

v2 .v 
 B/ � @fe1
@v

d3v

D �
fe1v

2 .v 
 B/
	1

�1 �
Z

fe1




2v � .v 
 B/C v2
@

@v
.v 
 B/

�

D 0;

where we used integration by parts. The term
�

fe1v2 .v 
 B/
	

vanishes since the
distribution function goes to zero for v ! ˙1. The term v�.v 
 B/ is zero since
v ? .v 
 B/. The last term vanishes for the same reasons as in Problem 3.11.

D. The first term on the right-hand side is given by

�
@ ln ne

@t
C ue � r ln ne

�Z

v2fe0 d3v D D ln ne

Dt

Z
�
v2x C v2y C v2z

�
fe0 d3v

D D ln ne

Dt
3

Z

v2i fe0 d3v:

With Eq. (3.49) we find

D ln ne

Dt

Z

v2fe0 d3v D 3

2

ne

ˇ

D ln ne

Dt
D �3

2

ne

ˇ
r � ue;

where the convective derivative D ln ne=Dt was be replaced by �r � ue.
E. The second term on the right-hand side is given by

D ln Te

Dt

Z �

ˇv2 � 3

2

�

v2fe0 d3v D D ln Te

Dt

Z �

ˇv4 � 3

2
v2
�

fe0 d3v:

With v2 D �
v2x C v2y C v2z

�
we find

v4 D v4x C v4y C v4z C 2v2xv
2
y C 2v2xv

2
z C 2v2yv

2
z :

Substituting this expression into the equation we find

D ln Te

Dt

Z �

ˇv2 � 3

2

�

v2fe0 d3v
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D D ln Te

Dt

Z �

3ˇv4i C 6ˇv2i v
2
j � 3

2
v2
�

fe0 d3v

D D ln Te

Dt

�
9

4

ne

ˇ
C 6

4

ne

ˇ
� 9

4

ne

ˇ

�

D 3

2

ne

ˇ

D ln Te

Dt
;

where i ¤ j.
F. For the third, fourth, and fifth term we find

Z

fe0v
2




Œv � r ln ne�C
�

ˇv2 � 3

2

�

Œv � r ln Te�C me

Te
A � v

�

d3v D 0;

where we again used the vector A to simplify the expression. All terms vanish
since the integrand is an odd function with respect to v.

G. The sixth term on the right-hand side gives

@uek

@rj

me

Te

Z

v2vjvkfe0 d3v D 0

for j ¤ k, since the integrand is an odd function in v. For j D k we find

@uej

@rj

me

Te

Z

v2v2j fe0 d3v D @uej

@rj

me

Te

Z
�
v4j C v2j v

2
k C v2j v

2
l

�
fe0 dvjdvkdvl

D @uej

@rj

me

Te

�
3

4

ne

ˇ2
C 1

2

ne

ˇ2

�

D @uej

@rj

me

Te

5

4

ne

ˇ2
;

where the integration over v2j v
2
k gives the same result as the integration over

v2j v
2
l . With ˇ D me=2Te we find

@uej

@rj

me

Te

Z

v2v2j fe0 d3v D 5

2

ne

ˇ
r � ue:

By summarizing all results we find

�3
2

ne

ˇ
r � ue C 3

2

ne

ˇ

D ln Te

Dt
C 5

2

ne

ˇ
r � ue D 0;

and after simplification we obtain

3

2

D ln Te

Dt
C r � ue D 3

2

�
@

@t
C ue � r

�

ln Te C r � ue D 0:

Problem 3.14 Eliminate the time derivatives in (3.42) using the results from the
Exercises above to derive Eq. (3.57).
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Solution For convenience, let us summarize the results from Problems 3.11–
3.13. From the zeroth moment we find

D ln ne

Dt
D
�
@

@t
C ue � r

�

ln ne D �r � ue;

which shows that the convective derivative D ln ne=Dt can be replaced by �r � ue.
The first moment gives

e

me
E0 C

�
@

@t
C ue � r

�

ue D Re � r.nekTe/

neme

and the second moment

D ln kTe

Dt
D
�
@

@t
C ue � r

�

ln.kTe/ D �2
3

r � ue:

Substituting these results into Eq. (3.44) we can eliminate all time derivatives and
obtain

Cee. fe1/C Cei. fe1/C
�

e

me
v 
 B

�

� rvfe1 D �r � uefe0

�
�

ˇv2 � 3

2

�
2

3
r � uefe0 C v � r ln nefe0 C

�

ˇv2 � 3

2

�

v � r ln.kTe/fe0

C mev

kTe
� Re � r.nekTe/

neme
fe0 C mevjvk

kTe

@uek

@rj
fe0 C �ei

mev � .ue � ui/

kTe
fe0:

The first term on the right hand side cancels with the second part of the second term.
To simplify we also expand the third term on the right-hand side (v � r ln nefe0) and
the expression r.neTe/ in the fifth term. We obtain

Cee. fe1/C Cei. fe1/C
�

e

me
v 
 B

�

� rvfe1 D �2
3
ˇv2r � uefe0

C v

ne
� rnefe0 C

�

ˇv2 � 3

2

�

v � r ln.kTe/fe0 � v

Te
� rTefe0 � v

ne
� rnefe0

C v

kTe
� Re

ne
fe0 C mevjvk

kTe

@uek

@rj
fe0 C �ei

mev � .ue � ui/

kTe
fe0: (3.54)

The second and the fifth term on the right-hand side cancel each other. By writing
rTe=Te D r ln.kTe/ in the fourth term we find that the third and the fourth term
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can be combined. By rearranging the terms on the right-hand side we find

Cee. fe1/C Cei. fe1/C
�

e

me
v 
 B

�

� rvfe1 D
�

ˇv2 � 5

2

�

v � r ln.kTe/fe0

C v �



Re

kTene
C �ei

me.ue � ui/

kTe

�

fe0 C mevjvk

kTe

@uek

@rj
fe0 � 2

3
ˇv2r � uefe0:

The last two terms can be expressed through the rate-of-strain tensor Wa
jk by

mevjvk

kTe

@uek

@rj
� m

3kTe
v2r � ue D m

2kTe




vjvk � v2

3
ıjk

�

Wjk; (3.55)

where we neglected the distribution function fe0 and substituted ˇ D me=2kTe. The
rate-of-strain tensor Wa

jk is given by

Wjk D @uj

@rk
C @uk

@rj
� 2

3
r � ueıjk: (3.56)

To show this identity we substitute the rate-of-strain tensor in the expression on the
right-hand side and obtain

m

2kTe

�

vjvk � v2

3
ıjk

�

Wjk D m

2kTe




vjvk
@uj

@rk
C vjvk

@uk

@rj
� vjvk

2

3
.r � ue/ ıjk

� v2

3
ıjk
@uj

@rk
� v2

3
ıjk
@uk

@rj
C 2v2

9
ıjkr � ue

�

:

Note that we use Einstein’s summation convention and implicitly sum over the
indices j and k. Therefore, we can change the indices in the first term (the summation
does not change) and combine the first and second term. The third term contributes
only for j D k, so that vjvk D v2j . Since we sum over that index we obtain
v2 D P

v2j D v2x C v2y C v2z . The fourth and the fifth term also contribute only
for j D k, and with

P
@uj=@rj D r � u we can rewrite both terms through the dot

product. The last term also contributes only for j D k. Since we have to sum this
term also over x; y; z we obtain a factor 3.

m

2kTe

�

vjvk � v2

3
ıjk

�

Wjk

D m

2kTe




2vjvk
@uk

@rj
� v2 2

3
r � ue � v2

3
r � ue � v2

3
r � ue C 3

2v2

9
r � ue

�

:
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The last four terms can be combined to

m

2kTe

�

vjvk � v2

3
ıjk

�

Wjk D m

2kTe




2vjvk
@vk

@rj
� 2

3
v2r � ue

�

:

After multiplying the squared brackets with the factor 1=2we obtain the exact same
expression as in Eq. (3.55), and, therefore,

Cee. fe1/C Cei. fe1/C
�

e

me
v 
 B

�

� rv fe1 D
�

ˇv2 � 5

2

�

v � r ln.kTe/fe0

C v �



Re

kTene
C �ei

me.ue � ui/

kTe

�

fe0 C m

2kTe

�

vjvk � v2

3
ıjk

�

Wjk: (3.57)

3.8 Application 1: Transport Perpendicular to a Mean
Magnetic Field

One can also consider an alternative approach to the transport of particles,
momentum and energy across a mean magnetic field in a plasma. By
approximating the collision operator by the BGK operator C. f / D �. f0 � f /,
the kinetic equation can be expressed in components as

@f

@t
C @

@xi
Œ.ui C ci/f �C @

@vi


�
eEi

m
C �ijk.uj C cj/˝k

�

f

�

D � .f0 � f / ; (3.58)

where c D v � u is the particle velocity relative to the bulk velocity, and
˝k D eBk=m the particle gyrofrequency. Note that c D c.x; t/ and u.x; t/ are
functions of time and space.

By taking the clck moment of the kinetic equation one can derive an
evolution equation (3.63) for the pressure tensor Plm, where the pressure
tensor and the conductive heat flux are defined as

Plm D m
Z

clcmf d3v qilm D m
Z

ciclcmf d3v:

For the following calculations we will make frequent use of the relation
Z

cif d3v D
Z

.vi � ui/f d3v D
Z

vif d3v � ui

Z

f d3v

D nui � uin D 0: (3.59)
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Problem 3.15 By taking the clck-moment of the kinetic equation, derive the
evolution equation (3.63) for the pressure tensor Plm.

Solution We start by multiplying Eq. (3.58) with mass m and clcm and integrate
then with respect to v. Considering each term each term separately we find:

A. The first term on the left hand side is given by

Z

mclcm
@f

@t
d3v

D m
Z

@

@t
. fclcm/ d3v � m

Z

f
@

@t
.clcm/ d3v

D @

@t
m
Z

. fclcm/ d3v � m
Z

fcm
@cl

@t
d3v � m

Z

fcl
@cm

@t
d3v

D @Plm

@t
:

In the first step we used the chain rule to transform the function under the
integral. Note that (as stated above) the random velocities ci and the bulk
velocity ui depend on time. In the second step we used @cs=@t D �@us=@t, since
vi is an independent variable, and does, therefore, not depend on time. @us=@t
can then be pulled in front of the integral (because us is independent of vs). We
are left with integrals of the form given in Eq. (3.59), which are zero. Only the
first term remains.

B. For the second term on the left-hand side let us consider first the following
derivative

@clcm.ui C ci/f

@xi
D clcm

@.ui C ci/f

@xi
C .ui C ci/f




cl
@cm

@xi
C cm

@cl

@xi

�

D clcm
@.ui C ci/f

@xi
� .ui C ci/f




cl
@um

@xi
C cm

@ul

@xi

�

:

In the first step we used the chain rule twice. In the second step we used
c D v � u, where v is an independent variable (does not depend on the spatial
coordinate). The second term on the left-hand side of Eq. (3.58) can then be
written as

Z

mclcm
@

@xi
Œ.ui C ci/f � d

3v Dm
Z
@clcm.ui C ci/f

@xi
d3v

C m
Z

.ui C ci/f




cl
@um

@xi
C cm

@ul

@xi

�

d3v:
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In the first integral on the right-hand side we can pull out the derivative with
respect to xi, so that

m
Z
@clcm.ui C ci/f

@xi
d3v D @

@xi
m
Z

clcm.ui C ci/fd
3v

D @

@xi
ŒuiPlm C qilm� ;

where we pulled out ui in the first term and where we used the definitions for
the pressure tensor and the conductive heat flux. Therefore, the second term in
the integral above can be rewritten as

m
Z

.ui C ci/f




cl
@um

@xi
C cm

@ul

@xi

�

d3v

D mui

Z

f




cl
@um

@xi
C cm

@ul

@xi

�

d3v C m
Z

cif




cl
@um

@xi
C cm

@ul

@xi

�

d3v

D @um

@xi
Pil C @ul

@xi
Pim:

Note that the first term in the second line is zero, since the derivative @us=@xs

can be pulled in front of the integral and we are left with integrals of the form
given in Eq. (3.59). The second term in the second line yields the results for the
pressure tensor. By combining both results we obtain

Z

mclcm
@

@xi
Œ.ui C ci/f � d

3c D @

@xi
ŒuiPlm C qilm�C @um

@xi
Pil C @ul

@xi
Pim:

C. The first part of the third term in Eq. (3.58) can be written as

eEi

m
m
Z

clcm
@f

@vi
d3v D eEi

m
m


Z
@fclcm

@vi
d3v �

Z

f
@clcm

@vi
d3v

�

;

where we integrated by parts. Note that the first term on the right-hand side
vanishes for all possible combinations of l;m; i, since the distribution function
vanishes for vi D ˙1. In the second integral we rewrite the derivative as

@clcm

@vi
D clıim C cmıil; (3.60)

where we again used the chain rule with ci D vi � ui. We obtain then

eEi

m
m
Z

clcm
@f

@vi
d3v D �eEi

m
m
Z

f .clıim C cmıil/ d3v D 0: (3.61)
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This expression is zero for both cases l ¤ m (because the delta function is zero),
and l D m (because of Eq. (3.59)).

D. For the second part of the third term in Eq. (3.58) we consider both terms
separately. We begin with

�ijkuj˝km
Z

clcm
@f

@vi
d3v D 0;

which vanishes for the same reasons as we have shown under part C of this
Problem. Note that uj and ˝k do not depend on the velocity and can therefore
be pulled in front of the derivative and the integral.

E. The next part of the third term in Eq. (3.58) is then given by

�ijk˝km
Z

clcm
@cjf

@vi
d3v D �ijk˝km

Z

clcmcj
@f

@vi
d3v:

Note that the � tensor is zero for i D j. Let us consider now the following
derivative

@fcjclcm

@vi
D clcmcj

@f

@vi
C f

@cjclcm

@vi
D clcmcj

@f

@vi
C fcj Œclıim C cmıil� ;

where we used the relation (3.60) and again the fact that the � tensor is zero for
i D j. With that we can rewrite the expression above as

�ijk˝km
Z

clcm
@cjf

@vi
d3c

D �ijk˝km


Z
@fcjclcm

@vi
d3v �

Z

fcj Œclıim C cmıil� d
3v

�

:

The first term on the right hand side is zero for any combination of l;m; i and j,
so that we are left with

�ijk˝km
Z

clcm
@cjf

@vi
d3v D ��ijk˝km

Z

fcj Œclıim C cmıil� d
3v:

We have to distinguish the following cases:

• l ¤ m: Here we have to distinguish between m D i and l D i.

A. For l D i we have

�ijk˝km
Z

clcm
@cjf

@vi
d3v D ��ljk˝km

Z

fcjcmd3v

D ��ljk˝kPjm



3.8 Application 1: Transport Perpendicular to a Mean Magnetic Field 177

and likewise
B. m D i

�ijk˝km
Z

clcm
@cjf

@vi
d3v D ��mjk˝km

Z

fcjcld
3v

D ��mjk˝kPjl:

Both results have to be added up to obtain

�ijk˝km
Z

clcm
@cjf

@vi
d3v D �˝k

�
�ljkPjm C �mjkPjl

	
: (3.62)

• l D m: In this case we have

�ijk˝km
Z

clcm
@cjf

@vi
d3v D �2�ijk˝km

Z

fcjclıild
3v

D �2�ijk˝km
Z

fcjcid
3v D �2�ijk˝kPji:

This result can also be derived from Eq. (3.62) by setting l D m D i.

We summarize that

�ijk˝km
Z

clcm
@cjf

@vi
d3v D �˝k

�
�ljkPjm C �mjkPjl

	
;

which is valid for l D m and l ¤ m.
F. The collision term on the right hand side becomes

�

Z

clcm. f0 � f /d3v D �

Z

clcmf0d
3v � �

Z

clcmfd3v D � .pılm � Plm/ :

Here f0 denotes the Maxwellian distribution. Therefore, the first integral on the
right-hand side vanishes for l ¤ m, since we have an odd function in c under the
integral. The first term contributes then only for l D m, where p is the pressure
(see [5]). Compare also with Problem 2.8 part E. For the second term we use the
definition for the pressure tensor Plm given above.

By combining all results we obtain the evolution equation for the pressure tensor

@Plm

@t
C @

@xi
ŒuiPlm C qilm�C @um

@xi
Pil C @ul

@xi
Pim

�˝k
�
�ljkPjm C �mjkPjl

	 D � .pılm � Plm/ : (3.63)

Problem 3.16 Complete the steps in deriving the Kaufmann representation for Slm

and the K-operator.
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Solution Here we begin with the result of the preceding problem, Eq. (3.63).
By invoking Braginskii’s short-mean-free-path orderings to the pressure tensor
evolution equation we find that terms proportional to � and ˝ are larger than
all other terms, i.e., they are dominating. That means that, to lowest order, the
distribution function becomes Maxwellian, f D f0, so that

Plm D pılm qilm D 0:

For the next order we substitute these expressions in the small terms of Eq. (3.63),
i.e., terms that are not proportional to � and˝ . In this case we obtain



@p

@t
C @uip

@xi

�

ılm C
�
@um

@xl
C @ul

@xm

�

p C � .Plm � pılm/

D ˝k
�
�ljkPjm C �mjkPjl

	
; (3.64)

where we pulled the term proportional to ˝ to the right-hand side and the term
proportional to � to the left-hand side (note that we changed the order to compensate
the sign). We denote the left hand side as Slm and the right hand side as K.P/˝ , so
that Eq. (3.64) can be written as

K.P/ D S

˝
:

Problem 3.17 Show that for a Maxwell-Boltzmann distribution,

Hij �
Z

m

2
v2vivjf d3v D 5

2m
pkBTıij:

Solution The Maxwell-Boltzmann distribution is given by (see also Eq. (3.38)
in Problem 3.8)

f .v/ D n

�
ˇ

�

�3=2
e�ˇv2 where ˇ D m

2kBT
(3.65)

and v2 D vivi D P
v2i . We evaluate the integral for the two cases: i ¤ j and i D j.

A. The case i ¤ j: Here the integral is zero since we have odd functions of v under
the integral, see also Eq. (3.46),

Z
m

2
v2vivjf d3v D 0:
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B. The case i D j: Here the integral takes the form

Hii D m

2

Z

v2v2i f d3v D m

2

Z
�
v2i C v2j C v2k

�
v2i f d3v

D m

2


Z

v4i f d3v C
Z

v2j v
2
i f d3v C

Z

v2kv
2
i f d3v

�

D n
m

2

�
ˇ

�

�3=2 
Z

v4i e�ˇv2 d3v C
Z

v2j v
2
i e�ˇv2 d3v C

Z

v2kv
2
i e�ˇv2 d3v

�

D n
m

2

�
ˇ

�

�3=2 

3

4

�3=2

ˇ7=2
C 1

4

�3=2

ˇ7=2
C 1

4

�3=2

ˇ7=2

�

D n
m

2

5

4

1

ˇ2
;

where we used the integrals from Eq. (3.47). Substituting ˇ we obtain

Hii D n
m

2

5

4

4k2BT2

m2
D 5

2m
nk2BT2 D 5

2m
pkBT;

where we used p D nkBT. It follows for the general expression that

Hij D 5

2m
pkBTıij:

3.9 Application 2: The Equations of Magnetohydrodynamics

The ideal MHD equations are given by

@�

@t
C r � .�u/ D 0 (MHD-1)

�

�
@u
@t

C u � ru
�

D �rP C J 
 B (MHD-2)

@B
@t

D r 
 .u 
 B/ (MHD-3)

r 
 B D �0J (MHD-4)

(continued)
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r � B D 0 (MHD-5)

@P

@t
C u � rP C 
Pr � u D 0; (MHD-6)

where � is the mass density, u the center-of-flow velocity, J the current
density, P the total pressure, B the magnetic field, and 
 the adiabatic index.

Problem 3.18 Linearize the ideal MHD equations with � D �0 D const:, B D
B0Oz C ıBOy, u D ıuOy, J D ıJ Ox. Seek solutions of the linearized 1D MHD equations
in the form exp Œi.!t � kz/�, where ! is the wave frequency and k the corresponding
wave number and derive the Alfvén wave dispersion relation.

Solution We have

� D �0 B D
0

@
0

ıB
B0

1

A u D
0

@
0

ıu
0

1

A J D
0

@
ıJ
0

0

1

A :

A. Since the density is constant we find for the first equation (MHD-1),

�0
@ıu

@y
D 0; (3.66)

where we already evaluated the dot product. The time derivative vanishes
because the density � D �0 is constant.

B. The second equation (MHD-2) becomes

�0
@

@t

0

@
0

ıu
0

1

A D
0

@
ıJ
0

0

1

A 

0

@
0

ıB
B0

1

A D
0

@
0

�B0ıJ
ıJıB

1

A ;

where we neglected the term u � ru D ıu@yıu D O.ıu2/, since it is of second
order in the velocity turbulence. Note also that due to the constant density there
is no pressure gradient, i.e., rP D 0. We also find ıJıB D 0 (last component of
the vector). From the second component we obtain

�0
@ıu

@t
D �B0ıJ: (3.67)
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C. The third equation (MHD-3) becomes

@

@t

0

@
0

ıB
B0

1

A D r 

2

4

0

@
0

ıu
0

1

A 

0

@
0

ıB
B0

1

A

3

5 D

0

B
@

0

B0
@ıu
@z

�B0 @ıu@y

1

C
A :

The time derivation of B0 is zero and from Eq. (3.66) we know that @ıu=@y D 0.
From the second component we obtain the single equation

@ıB

@t
D B0

@ıu

@z
: (3.68)

D. The fourth equation (MHD-4) becomes

r 

0

@
0

ıB
B0

1

A D

0

B
@

@B0
@y � @ıB

@z

� @B0
@x

@ıB
@x

1

C
A D �0

0

@
ıJ
0

0

1

A :

From the first component we find

�@ıB
@z

D �0ıJ; (3.69)

where @B0=@y D 0, since B0 D const:
E. The fifth equation (MHD-5) becomes

r � B D r �
0

@
0

ıB
B0

1

A D 0 ) @ıB

@y
D 0:

F. The sixth equation (MHD-6) becomes then

@P

@t
C 
Pr �

0

@
0

ıu
0

1

A D 0 ) @P

@t
C 
P

@ıu

@y
D 0:

From Eq. (3.66) we know that @ıu=@y D 0, so that @P=@t D 0.

The set of linearized 1D ideal MHD equations can then be summarized as

�0
@ıu

@t
D �B0ıJ

@ıB

@t
D B0

@ıu

@z
�@ıB
@z

D �0ıJ:
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By combining Eqs. (3.67) and (3.69) we obtain with Eq. (3.68) the following set of
equations

�0
@ıu

@t
D B0
�0

@ıB

@z
and

@ıB

@t
D B0

@ıu

@z
: (3.70)

We are now seeking solutions of the form

ı� D ı N�ei.!t�kz/;

where � is either ıu or ıB. In general we obtain for the derivations

@ı�

@t
D i!ı� and

@ı�

@z
D �ikı�;

so that the set of Eqs. (3.70) becomes

�0i!ıu D �ik
B0
�0
ıB and i!ıB D �ikB0ıu: (3.71)

Combining both equations leads to

�0!ıu D k2
B20
�0!

ıu ) !2

k2
D B20
�0�0

) vA D !

k
D ˙ B0p

�0�0
;

which is the dispersion relation for the Alfvén velocity.

Problem 3.19 For B D BOz, linearize the ideal 1D (say for the x coordinate) MHD
equations about a stationary constant state. Seek solutions of the linearized 1D MHD
equations in the form exp Œi.!t � kx/�, where ! is the wave frequency and k the
corresponding wave number and derive the magnetosonic wave dispersion relation.

Solution To linearize about a constant state we define

� D �0 C ı� B D B0 C ıB u D ıu J D ıJ P D P0 C ıP;

where the index 0 describes the time invariant and homogeneous background plasma
at rest, and ı�, ıB, and ıu are small perturbations to the background plasma. Note
that u D ıu since we linearize about a stationary constant state, hence we have no
background flow. Also, since J D e.niui Cneue/=�q we find J D ıJ. The first MHD
equation (MHD-1) becomes

@ı�

@t
C �0r � ıu D 0;
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where we neglected the term r � ı�ıu. The second ideal MHD equation (MHD-2)
becomes then

�0
@ıu
@t

C rıP D ıJ 
 B0; (3.72)

where we again neglected the term u �ru D ıu@yıu D O.ıu2/. The third and fourth
MHD equations (MHD-3) and (MHD-4) cane written as

@ıB
@t

D r 
 .ıu 
 B0/

r 
 ıB D �0ıJ: (3.73)

For the divergence free magnetic field and the pressure we find

r � ıB D 0

@ıP

@t
C 
P0r � ıu D 0:

By combining Eqs. (3.72) and (3.73) we obtain the following set of equations

@ı�

@t
C �0r � ıu D 0

�0
@ıu
@t

C rıP C 1

�0
B0 
 .r 
 ıB/ D 0

@ıB
@t

� r 
 .ıu 
 B0/ D 0

@ıP

@t
C 
P0r � ıu D 0:

For the magnetic field and the variations in velocity and pressure, we have

B D
0

@
0

0

B0 C ıBz.x; t/

1

A ıu D
0

@
ıux.x; t/
0

0

1

A ıP D ıP.x; t/:

Note that all variations depend on the x-coordinate solely! We obtain the 1D set of
equations

@ı�

@t
C �0

@ıux

@x
D 0

�0
@ıux

@t
C @ıP

@x
C B0
�0

@ıBz

@x
D 0
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@ıBz

@t
C B0

@ıux

@x
D 0

@ıP

@t
C 
P0

@ıux

@x
D 0:

We are seeking solutions of the form

ı� D ı N�ei.!t�kx/;

where � is either ıu, ıB or ıP. In general we obtain for the derivations

@ı�

@t
D i!ı� and

@ı�

@x
D �ikı�;

so that the set of equations can be expressed by

!ı� � k�0ıux D 0 (3.74a)

!�0ıux � kıP � k
B0
�0
ıBz D 0 (3.74b)

!ıBz � kB0ıux D 0 (3.74c)

!ıP � k
P0ıux D 0; (3.74d)

where we divided by the complex number i.

• Alternative 1: By substituting Eqs. (3.74d) and (3.74c) in Eq. (3.74b), we find

!2ıux � k2

P0
�0
ıux � k2

B20
�0�0

ıux D 0;

where we also divided by �0. With vA D
q

B20=�0�0 and vs D p

P0=�0, it

follows that

!2

k2
� v2s � v2A D 0 ) v2ms D !2

k2
D v2s C v2A; (3.75)

where the velocity of the magnetosonic wave is the geometric mean of the sound

speed of the particles and the Alfvén speed, vms D
q
v2s C v2A.

• Alternative 2 We may rewrite the set of equations in matrix form as:

0

B
B
B
@

! �k�0 0 0

0 !�0 �k �k B0
�0

0 �kB0 0 !

0 �k
P0 ! 0

1

C
C
C
A

�

0

B
B
@

ı�

ıux

ıP
ıBz

1

C
C
A D 0
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Now, the determinant of the matrix has to be zero. Developing the determinant
for the first column leads to

det M D !




�!�0.!2/C k.!k
P0/C k
B0
�0
.!kB0/

�

D 0:

Simplifying and dividing by �0 yields

det M D !4 � !2k2 
P0
�0

� !2k2
B20
�0�0

D 0:

With vA D
q

B20=�0�0 and vs D p

P0=�0 we obtain

!4 D !2k2.v2s C v2A/ ) v2ms D !2

k2
D v2s C v2A;

where the velocity of the magnetosonic wave is the geometric mean of the sound

speed of the particles and the Alfvén speed, vms D
q
v2s C v2A.

Problem 3.20 Derive the frozen-in field equation,

d

dt

�
B
�

�

D 1

�
.B � ru � Br � u/C B

�
r � u D B

�
� ru

by using the Lagrangian form for the magnetic flux, or induction equation,

dB
dt

D @B
@t

C u � rB D B � ru � Br � u (3.76)

and the conservation of mass

@�

@t
C r � .�u/ D @�

@t
C �r � u C u � r� D 0 $ d�

dt
D ��r � u; (3.77)

where we used the convective derivative (see Eq. (3.43) in Chap. 3.7)

d

dt
D @

@t
C u � r; (3.78)

which represents the time derivative seen in the local rest frame of the fluid (see also
Eq. (2.48) of Problem 2.10).

Solution We calculate the derivative

d

dt

�
B
�

�

D 1

�

dB
dt

� B
�2

d�

dt
D 1

�
.B � ru � Br � u/C B

�
r � u D B

�
� ru;
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where we substituted (3.76) and (3.77) for the convective derivatives with respect to
B and �, respectively.

Problem 3.21 Show, using the kinematic equation of motion for a volume element,
that mass in a fluid element dM � � dV is conserved.

Solution If the mass in a fluid element is constant, then the total time derivative
of dM has to be zero. The time derivative of the mass in a fluid element is given by

d

dt
.dM/ D d

dt
.� dV/ D d�

dt
dV C �

d

dt
.dV/:

The kinematic motion of a fluid element dV is given by (see [5])

d

dt
.dV/ D r � u dV; (3.79)

which results from the conservation of mass. Together with expression (3.77),
d�=dt D ��r � u, we find

d

dt
.dM/ D ��r � u dV C �r � u dV D 0:

Therefore, the mass in a fluid element is conserved.

Problem 3.22 Show that the momentum of a fluid element .�u/dV is not constant.

Solution The time derivative of the momentum of a fluid element is given by

d

dt
.dp/ D d

dt
Œ.�u/dV� D d.�u/

dt
dV C �u

d

dt
.dV/

D u
d�

dt
dV C �

du
dt

dV C �ur � u dV;

D �u�r � udV C �
du
dt

dV C �ur � u dV;

where we substituted Eq. (3.79) for the derivative of the volume element in the
second step and the time derivative by the convective derivative, d�=dt D ��r � u,
in the third step (see also expression (3.77)). Obviously, the first and last term cancel
each other and we obtain

d

dt
.dp/ D �

du
dt

dV:

Since du=dt ¤ 0, see for example Eq. (MHD-2), we find that the momentum of a
fluid element is not conserved.
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Problem 3.23 Show that the total energy density of a fluid element " D �u2=2C
P=.
 � 1/C B2=2�0 is not constant.

Solution Consider the time derivative of the total energy density

d

dt
." dV/ D d

dt



1

2
�u2dV C P


 � 1
dV C B2

2�0
dV

�

: (3.80)

A. The first term is then

d

dt



1

2
�u2dV

�

D u � du
dt
� dV C u2

2
dV

d�

dt
C u2

2
�

d

dt
.dV/

D u � du
dt
� dV C u2

2
Œ��dVr � u C �dVr � u�

D u � du
dt
� dV ¤ 0; (3.81)

where we used the conservation of mass, Eq. (3.77), to substitute d�=dt and
Eq. (3.79) to substitute the derivative of the volume element. Obviously, the
second and third term cancel; the first term remains, since du=dt ¤ 0.

B. The second term is

d

dt



P


 � 1
dV

�

D 1


 � 1

dP

dt
dV C 1


 � 1P
d

dt
.dV/

D � 



 � 1
Pr � udV C 1


 � 1
PdVr � u

D �Pr � udV (3.82)

where we used dP=dt D �
Pr � u, compare with Eq. (MHD-6), and Eq. (3.79)
for the derivative of the fluid element.

C. The last term is given by

d

dt



B2

2�0
dV

�

D B
�0

� dB
dt

dV C B2

2�0

d

dt
.dV/

D 1

�0
B � ŒB � ru � Br � u� dV C B2

2�0
r � u dV

D 1

�0
B � .B � ru/ � B2

2�0
r � u dV;¤ 0; (3.83)

where we used the induction equation (3.76) for dB=dt and the derivative of the
fluid element (3.79).



188 3 Collisional Charged Particle Transport in a Magnetized Plasma

Combining all results we find that the total energy density is not constant,

d

dt
." dV/ ¤ 0: (3.84)

3.10 Application 3: MHD Shock Waves

Problem 3.24 Starting from the equation for the shock adiabatic,

0 D �
M2

A1 � r
�2



M2
A1 � 2r

a2s1
V2

An1

1

r C 1 � 
 .r � 1/

�

� rM2
A1



2r � 
 .r � 1/

r C 1 � 
 .r � 1/
M2

A1 � r

�

tan2 
1 (3.85)

derive the shock polar relation or shock cubic (3.87), by using r � M2
A1=M2

A2, and
sec2 
1 D 1C tan2 
1.

Solution As a starting point we substitute r D M2
A1=M2

A2 in Eq. (3.85). In doing
so, we consider first the denominator of the fractions occurring in the equation,

r C 1� 
 .r � 1/ D M2
A1

M2
A2

C 1 � 


�
M2

A1

M2
A2

� 1
�

D 1

M2
A2

�
M2

A1.1 � 
/C M2
A2.1C 
/

	
;

Secondly, we consider the numerator of the fractions,

2r � 
 .r � 1/ D 2
M2

A1

M2
A2

� 


�
M2

A1

M2
A2

� 1

�

D 1

M2
A2

�
M2

A1.2 � 
/C M2
A2


	
;

Also,

�
M2

A1 � r
�2 D M4

A1

M4
A2

�
M2

A2 � 1
�2
:

With these relations we obtain for Eq. (3.85) the following expression,

0 D M4
A1

M4
A2

�
M2

A2 � 1
�2



M2
A1 � 2

a2s1
V2

An1

M2
A1

M2
A2

M2
A2

M2
A1.1 � 
/C M2

A2.1C 
/

�

� M2
A1

M2
A2

M2
A1



M2

A1.2 � 
/C M2
A2


M2
A1.1 � 
/C M2

A2.1C 
/
M2

A1 � M2
A1

M2
A2

�

tan2 
1:
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In the first squared brackets we cancel M2
A2 in the second term. Assuming that

M2
A1 ¤ 0 and M2

A2 ¤ 0, we multiply the equation by M4
A2 and divide the entire

equation by M4
A1, obtaining

0 D �
M2

A2 � 1
�2



M2
A1 � 2

a2s1
V2

An1

M2
A1

M2
A1.1 � 
/C M2

A2.1C 
/

�

� M2
A2



M2

A1.2 � 
/C M2
A2


M2
A1.1 � 
/C M2

A2.1C 
/
M2

A1 � M2
A1

M2
A2

�

tan2 
1:

Note that each term (in squared brackets) contains M2
A1. Under the assumption that

M2
A1 ¤ 0, we divide this expression by M2

A1. We also pull M2
A2 into the second term

with squared brackets,

0 D �
M2

A2 � 1
�2



1 � 2
a2s1

V2
An1

1

M2
A1.1 � 
/C M2

A2.1C 
/

�

�



M2
A1.2 � 
/C M2

A2


M2
A1.1 � 
/C M2

A2.1C 
/
M2

A2 � 1
�

tan2 
1:

Now, multiply the entire equation with the denominator M2
A1.1 � 
/C M2

A2.1C 
/

to obtain

0 D �
M2

A2 � 1
�2
�
�
M2

A1.1 � 
/C M2
A2.1C 
/

	 � 2
a2s1

V2
An1

�

� ˚�
M2

A1.2 � 
/C M2
A2


	
M2

A2 � �
M2

A1.1 � 
/C M2
A2.1C 
/

	�
tan2 
1:

By pulling
�
M2

A2 � 1
�2

into the first curly brackets and tan2 
1 into the second curly
brackets, we obtain

0 D �
M2

A2 � 1
�2 �

M2
A1.1� 
/C M2

A2.1C 
/
	 � 2

a2s1
V2

An1

�
M2

A2 � 1
�2

� �
M2

A1.2 � 
/C M2
A2


	
M2

A2 tan2 
1

C �
M2

A1.1 � 
/C M2
A2.1C 
/

	
tan2 
1:

Now, we need to pull all terms that contain M2
A1 to the left-hand side. For simplicity,

we first expand all squared brackets and obtain

0 D M2
A1.1 � 
/ �M2

A2 � 1�2 C M2
A2.1C 
/

�
M2

A2 � 1
�2 � 2a2s1

V2
An1

�
M2

A2 � 1�2

� M2
A1.2 � 
/M2

A2 tan2 
1 � M4
A2
 tan2 
1

C M2
A1.1� 
/ tan2 
1 C M2

A2.1C 
/ tan2 
1;
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and then pull the first term of each line to the left-hand side (since they all include
M2

A1); we obtain

� M2
A1.1 � 
/

�
M2

A2 � 1�2 C M2
A1.2 � 
/M2

A2 tan2 
1 � M2
A1.1 � 
/ tan2 
1

D M2
A2.1C 
/

�
M2

A2 � 1
�2 � 2 a2s1

V2
An1

�
M2

A2 � 1�2

� M4
A2
 tan2 
1 C M2

A2.1C 
/ tan2 
1:

By simplifying this expression we obtain the shock cubic or shock polar relation,

M2
A1

n
.
 � 1/

�
M2

A2 � 1
�2 C �

.2 � 
/M2
A2 � .1 � 
/	 tan2 
1

o
(3.86)

D



M2
A2.1C 
/� 2

a2s1
V2

An1

�
�
M2

A2 � 1�2 � M2
A2

�
M2

A2
 � .1C 
/
	

tan2 
1:

Note that on the left-hand side we changed .1 � 
/ ! �.
 � 1/. Since VAn1 is the
Alfvén velocity normal to the shock front we find

1

V2
An1

D 1

V2
A1 cos2 


D 1

V2
A1

sec2 
;

where we used sec 
 D 1= cos 
 . We find the shock polar relation

M2
A1

n
.
 � 1/

�
M2

A2 � 1
�2 C �

.2 � 
/M2
A2 � .1 � 
/	 tan2 
1

o
(3.87)

D



M2
A2.1C 
/� 2

a2s1
V2

A1

sec2 


�
�
M2

A2 � 1�2 � M2
A2

�
M2

A2
 � .1C 
/
	

tan2 
1:

Problem 3.25 Starting from the shock polar relation (3.86), derive the alternative
form

M2
A1 � M2

A2

D 2.M2
A2 � 1/.M2

A2 � M2
1C/.M2

A2 � M2
1�/

.
 � 1/.M2
A2 � 1/2 C .M2

1C � 1/.1 � M2
1�/

�
.2 � 
/M2

A2 � .1 � 
/	

by using the relations

a2s
V2

An

D M2CM2� tan2 
1 D .M2
1C � 1/.1� M2

1�/: (3.88)
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Solution First, we divide Eq. (3.86) by the term in curly brackets, so that

M2
A1 D

h
M2

A2.1C 
/� 2
a2s1

V2An1

i �
M2

A2 � 1
�2 � M2

A2

�
M2

A2
 � .1C 
/
	

tan2 
1

.
 � 1/ �M2
A2 � 1

�2 C �
.2 � 
/M2

A2 � .1 � 
/
	

tan2 
1
:

Obviously, on substituting tan2 
1 by relation (3.88) we find that the denominator of
this expression already corresponds to the desired result,

ˇ D .
 � 1/ �M2
A2 � 1

�2 C �
.2 � 
/M2

A2 � .1 � 
/
	

tan2 
1

D .
 � 1/ �M2
A2 � 1

�2 C .M2
1C � 1/.1 � M2

1�/
�
.2 � 
/M2

A2 � .1 � 
/	 ;

so that

M2
A1 D

h
M2

A2.1C 
/� 2
a2s1

V2An1

i �
M2

A2 � 1
�2 � M2

A2

�
M2

A2
 � .1C 
/
	

tan2 
1

ˇ
:

Consider now the numerator. On substituting the relations (3.88), we obtain

M2
A1 D

�
M2

A2.1C 
/ � 2M2
1CM2

1�
	 �

M2
A2 � 1�2

ˇ

� M2
A2

�
M2

A2
 � .1C 
/
	
.M2

1C � 1/.1� M2
1�/

ˇ
:

Now we subtract M2
A2 on both sides and obtain

M2
A1 � M2

A2 D
�
M2

A2.1C 
/� 2M2
1CM2

1�
	 �

M2
A2 � 1�2

ˇ

� M2
A2

�
M2

A2
 � .1C 
/
	
.M2

1C � 1/.1� M2
1�/

ˇ
� M2

A2ˇ

ˇ
;

where M2
A2 on the right-hand side has been multiplied with 1 D ˇ=ˇ in order to

calculate the numerator. The numerator of the entire right-hand side can then be
written as

˛ D �
M2

A2.1C 
/� 2M2
1CM2

1�
	 �

M2
A2 � 1

�2

� M2
A2

�
M2

A2
 � .1C 
/
	
.M2

1C � 1/.1 � M2
1�/� M2

A2ˇ:
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On substituting ˇ we obtain

˛ D �
M2

A2.1C 
/ � 2M2
1CM2

1�
	 �

M2
A2 � 1�2 (SP-1)

� M2
A2

�
M2

A2
 � .1C 
/
	
.M2

1C � 1/.1� M2
1�/ (SP-2)

� M2
A2.
 � 1/ �M2

A2 � 1
�2

(SP-3)

� M2
A2.M

2
1C � 1/.1 � M2

1�/
�
.2� 
/M2

A2 � .1 � 
/	 (SP-4)

Combining now (SP-1) and (SP-3) yields

(SP-1) C (SP-3) D 2
�
M2

A2 � 1�2 �M2
A2 � M2

1CM2
1�
�
:

Combining (SP-2) and (SP-4) yields

(SP-2) C (SP-4) D �2M2
A2.M

2
1C � 1/.1 � M2

1�/
�
M2

A2 � 1
�
:

We can then find

˛

D 2
�
M2

A2 � 1�2 �M2
A2 � M2

1CM2
1�
�� 2M2

A2.M
2
1C � 1/.1� M2

1�/
�
M2

A2 � 1�

D 2
�
M2

A2 � 1� ��M2
A2 � M2

1CM2
1�
� �

M2
A2 � 1

�� M2
A2.M

2
1C � 1/.1� M2

1�/
	

D 2
�
M2

A2 � 1� �M4
A2 � M2

A2M
2
1CM2

1� � M2
A2 C M2

1CM2
1�

� M2
A2M

2
1C C M2

A2M
2
1CM2

1� C M2
A2 � M2

A2M
2
1�
	
:

Obviously,

˛ D 2
�
M2

A2 � 1
� �

M4
A2 C M2

1CM2
1� � M2

A2M
2
1C � M2

A2M
2
1�
	

D 2
�
M2

A2 � 1
� �

M4
A2 � M2

A2M
2
1C C M2

1CM2
1� � M2

A2M
2
1�
	

D 2
�
M2

A2 � 1
� �

M2
A2

�
M2

A2 � M2
1C
� � M2

1�
�
M2

A2 � M2
1C
�	

D 2
�
M2

A2 � 1
� �

M2
A2 � M2

1C
� �

M2
A2 � M2

1�
�
:

Putting all results together we obtain

M2
A1 � M2

A2 D ˛

ˇ

D 2
�
M2

A2 � 1
� �

M2
A2 � M2

1C
� �

M2
A2 � M2

1�
�

.
 � 1/ �M2
A2 � 1

�2 C .M2
1C � 1/.1� M2

1�/
�
.2 � 
/M2

A2 � .1 � 
/	
:

Problem 3.26 Solve the shock polar relation numerically and plot curves for ˇp1 D
0:1 and ˇp1 D 4 and with 
 D 5=3.
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Fig. 3.2 Shown is how the Alfvén Mach number shock polar (3.89) changes as the upstream
magnetic field angle 
1 varies (
1 D 0°; 1°; 30°; and 60°) for ˇp1 D 0:1

Solution We rewrite Eq. (3.87) as

M2
A1

n
.
 � 1/ �M2

A2 � 1
�2 C �

.2 � 
/M2
A2 � .1 � 
/

	
tan2 
1

o
(3.89)

D �
M2

A2.1C 
/� 
ˇp sec2 

	 �

M2
A2 � 1

�2 � M2
A2

�
M2

A2
 � .1C 
/
	

tan2 
1:

where we used

a2s1
V2

A1

D 


2
ˇp: (3.90)

Equation (3.89) is solved numerically and the results are plotted in Figs. 3.2 and 3.3.
Shown is the change of the upstream Alfvén Mach number M2

A2 depending on the
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Fig. 3.3 Shown is how the Alfvén Mach number shock polar (3.89) changes as the upstream
magnetic field angle 
1 varies (
1 D 0°; 1°; 30°; and 60°) for ˇp1 D 4

upstream Mach number M2
A1. Those sections of the shock curve that lie above the

line r D M2
A2=M2

A1 D 1 correspond to expansion shocks, which are physically
inadmissible since they violate the second law of thermodynamics. The only physi-
cally acceptable solutions are those below the line r D 1; curves that correspond to
compressive solutions. For further information about the interpretation of the curves
we refer to Zank [5].



Chapter 4
Charged Particle Transport in a Collisionless
Magnetized Plasma

4.1 The Focussed Transport Equation

Here we start with the non-relativistic Boltzmann equation (2.1),

@f

@t
C v � rrf C F

m
� rvf D

�
ıf

ıt

�

s

C S: (4.1)

Note that, here, this equation has been implicitly separated into mean and
fluctuating parts, with the fluctuating components being treated as scattering
terms and have been relegated to the right-hand side. The particle source
term is denoted by S. The force term in the Boltzmann equation (2.1) can
be quite general. Here we restrict ourselves to F D q .E C v 
 B=cs/; the
electromagnetic force on a particle with mass m and charge q, where cs is the
speed of light.

Consider now a frame of reference that propagates in the inertial rest frame
at a velocity u (with the transformation (2.3), c D v�u), in which the motional
electric field is described by E D �u
B=cs. By transforming into the moving
frame the motional electric field cancels exactly the electric field and leaves
F D qc 
 B=cs. Following the transformations from Problem 2.2 we find for
the Boltzmann equation in a mixed phase space

@f

@t
C .ui C ci/

@f

@ri
�
�
@ui

@t
C �

uj C cj
� @ui

@rj
� q

mcs
.c 
 B/i

�
@f

@ci
D
�
ıf

ıt

�

s

;

(4.2)

(continued)
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where we neglected particle sources (see also Eq. (2.2)). Assuming that the
particle gyroradius is much smaller than any other spatial length scales in the
system and, similarly, that their gyroperiod is much smaller than any other
time scales in the system, then, the particle distribution may be regarded as
nearly gyrotropic, i.e., f .x; v; t/ D f .x; c; �; �; t/ is essentially independent of
gyrophase �, so that f .x; c; �; �; t/ ' f .x; c; �; t/, where � � cos 
 D c � b=c
is the particle pitch angle and b D B=B is the unit vector along the large-scale
magnetic field. Since we are assuming gyrotropy we may average Eq. (4.2)
over gyrophase, see the following Problem 4.1.

Problem 4.1 By collecting all the terms associated with the gyro-phase averaging,
derive the general form of the gyro-phase averaged transport equation.

Solution We start with Eq. (4.2) and transform first into spherical coordinates.
The distribution function in Eq. (4.2) is a function of position r, random velocity
c, and time t, so that f D f .r; c; t/. By transforming into spherical coordinates we
have c ! .c; �; �/, where c is the absolute value of c, � D c � b=c is the cosine
of the pitch angle, and � is the gyrophase. Here, b D B=jBj is a unit vector along
the large scale magnetic field. With a spatially varying magnetic field B it follows
that � and � depend on the location of the particle (since the magnetic field changes
with different particle positions). Thus, � D �.r/ and � D �.r/. With that we have
to substitute the gradient of f by

@f

@ri
H) @f

@ri
C @�

@ri

@f

@�
C @�

@ri

@f

@�
: (4.3)

For the substitution of the velocity gradient we transform the random velocity c into
spherical coordinates. For that we may write

c D c1e1 C c2e2 C c3e3:

Here e1; e2, and e3 are arbitrary but Cartesian unit vectors with jeij D 1 and c1; c2,
and c3 are the coordinates. Note that e1; e2, and e3 are orthogonal but not necessarily
.1; 0; 0/I .0; 1; 0/I .0; 0; 1/. The coordinate system, in which the random velocity c
is defined, is continuously changing in such a way that e3 always coincides with the
direction of the magnetic field b, i.e., e3 D b. For the transformation into spherical
coordinates we use

c1 D c sin 
 cos� c2 D c sin 
 sin � c3 D c cos 
 D c�:
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The curvilinear basis vectors are calculated by e˛ D .@c=@˛/=j@c=@˛j, where ˛ D
c; 
; �. We find

ec D sin 
 cos�e1 C sin 
 sin �e2 C cos 
e3

e
 D cos 
 cos�e1 C cos 
 sin �e2 � sin 
e3

e� D � sin �e1 C cos�e2:

The random velocity can therefore also be written as

c D cec D c .sin 
 cos�e1 C sin 
 sin �e2 C cos 
b/ : (4.4)

Note that we substituted e3 D b in the last term. Substituting the spatial derivative
by Eq. (4.3) we can rewrite Eq. (4.2) as

@f

@t
C .ui C ci/



@f

@ri
C @�

@ri

@f

@�
C @�

@ri

@f

@�

�

�
�
@ui

@t
C �

uj C cj
� @ui

@rj
�˝�ijkcjbk

�
@f

@ci
D
�
ıf

ıt

�

s

; (4.5)

where we used the gyrofrequency ˝ D qjBj=mcs and the Levi-Civita tensor �ijk.
For the transformation of the velocity gradient we consider

@f

@ci
D @f

@c

@c

@ci
C @f

@�

@�

@ci
C @f

@�

@�

@ci
:

• In the first term on the right-hand side we consider the derivative of c with respect
to ci and find

@c

@ci
D @

p
cjcj

@ci
D 1

2c
2cj
@cj

@ci
D cj

c
ıij D eci;

where ci=c D eci. In other words, the derivative of @c=@ci is the i-th component
of the unit vector of the random velocity.

• In the second term we have, with � D ec � b D ecjbj,

@�

@ci
D @ecjbj

@ci
D bj

@

@ci

�cj

c



D bj



1

c
ıij � eciecj

c

�

D



bi

c
� �eci

c

�

;

where b is independent of c.
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At this point we do not consider the gyrophase term and obtain for the velocity
gradient of the distribution function

@f

@ci
D @f

@c
eci C



bi

c
� �eci

c

�
@f

@�
C @f

@�

@�

@ci
: (4.6)

Substituting the velocity gradient in Eq. (4.5) we find the general form of the
transport equation in spherical coordinates,

@f

@t
C .ui C ci/



@f

@ri
C @�

@ri

@f

@�
C @�

@ri

@f

@�

�

�
�
@ui

@t
C �

uj C cj
� @ui

@rj
�˝�ijkcjbk

�





@f

@c
eci C



bi

c
� �eci

c

�
@f

@�
C @f

@�

@�

@ci

�

D
�
ıf

ıt

�

s

:

Under the assumption of a nearly gyrotropic distribution function we may neglect
terms proportional to @f=@� and obtain

@f

@t
C .ui C ci/



@f

@ri
C @�

@ri

@f

@�

�

�


@ui

@t
C �

uj C cj
� @ui

@rj
�˝�ijkcjbk

�

(4.7)





@f

@c
eci C



bi

c
� �eci

c

�
@f

@�

�

D
�
ıf

ıt

�

s

:

Now, we introduce a gyrophase average

h : : : i� D 1

2�

Z 2�

0

d�;

where

h sin � i� D 1

2�

Z 2�

0

d� sin� D 0; h cos� i� D 1

2�

Z 2�

0

d� cos� D 0;

(4.8)

and average Eq. (4.7) over gyrophase. For that we consider each term separately:

A. For the time derivative we obtain immediately

�
@f

@t

�

D @f

@t
;

since the distribution function is independent of gyrophase �.
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B. The second term is described by

�

.ui C ci/
@f

@ri

�

�

D �
ui C h ci i�

� @f

@ri
;

where we average over ci, since u and the spatial gradient of the distribution
function f are independent of �. Consider now expression (4.4), where the
average is written as h c i� D c h ec i� , so that

c h ec i� D c h sin 
 cos�e1 C sin 
 sin�e2 C cos 
b i� D c�b: (4.9)

According to the relations (4.8) the averages h sin � i� and h cos� i� vanish and
it remains only the e3 D b vector. It follows immediately for the i-th component
of that vector that h ci i� D c�bi and, therefore,

�

.ui C ci/
@f

@ri

�

�

D .ui C c�bi/
@f

@ri
:

C. For the third term we have to calculate
�

.ui C ci/
@�

@ri

@f

@�

�

�

D
�

ui
@�

@ri

@f

@�

�

�

C
�

ci
@�

@ri

@f

@�

�

�

: (4.10)

Let us consider each term separately:

a. The first term on the right-hand side of Eq. (4.10) is given by

�

ui
@�

@ri

@f

@�

�

�

D ui

�
@�

@ri

�

�

@f

@�
:

Remember that the pitch angle � D ec � b D ecjbj, so that

�
@�

@ri

�

�

D
�
@ecjbj

@ri

�

�

D ˝
ecj
˛
�

@bj

@ri
D �bj

@bj

@ri
:

Keep in mind that the average over � cannot be pulled into the derivative,
since � is a function of r. In the third step we used the results from Eq. (4.9)
and find

˝
ecj
˛
�

D �bj. In order to calculate @bj=@ri consider first

1

2

@.b � b/
@ri

D 1

2

@ bjbj

@ri
D bj

@ bj

@ri
D 0:
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The result must be zero, since b is a unit vector with b � b D 1 per definition.
Because of this result we have

�

ui
@�

@ri

@f

@�

�

�

D 0:

b. The second term on the right-hand side of Eq. (4.10) can be written as

�

ci
@�

@ri

@f

@�

�

�

D c

�

eci
@ecjbj

@ri

�

�

@f

@�
D c

˝
eciecj

˛
�

@bj

@ri

@f

@�
;

where we used � D ec � b D ecjbj and ci D ceci. In a vector description we
find for the averaging

h ec � r .ec � b/ i� D �h ec ˝ ec i� r	 � b: (4.11)

where the symbol ˝ denotes a dyadic product. In the following we will omit
the symbol and refer to ec ˝ ec D ecec as a dyadic product, see also Sect. 5.1.
For the average we find

h ecec i� D 1

2�

Z 2�

0

ecec d�

D 1

2�

Z 2�

0

.sin 
 cos�e1 C sin 
 sin �e2 C cos 
e3/


 .sin 
 cos�e1 C sin 
 sin �e2 C cos 
e3/ d�

D 1

2�

Z 2�

0

.sin2 
 cos2 � e1e1 C sin2 
 sin2 � e2e2

C cos2 
 e3e3 C 2 sin2 
 sin � cos�e1e2

C 2 sin 
 cos 
 cos�e1e3 C 2 sin 
 cos 
 sin �e2e3/ d�;

where we substituted Eq. (4.9) for ec. With the results given by Eq. (4.8) and
with

1

2�

Z 2�

0

sin2 � d� D 1

2
I 1

2�

Z 2�

0

cos2 � d� D 1

2

we find for the average

h ecec i� D 1 � �2

2
e1e1 C 1 � �2

2
e2e2 C �2e3e3: (4.12)
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As a side note: Since the base vectors are orthogonal, we have e1e1 C e2e2 C
e3e3 D �, where � is the identity (unity) matrix. And with e3 D b we can
also write

h ecec i� D 1 � �2

2
Œ� � bb�C �2bb:

By substituting this result back into Eq. (4.11) we obtain

h ec � r .ec � b/ i� D

�
1 � �2
2

Œ� � bb�C �2bb
�

r
�

� b

D


1 � �2
2

�
ıij � bibj

�C �2bibj

�
@

@ri
bj:

Consider the last two terms on the right-hand side of this expression, which
are essentially given by

bibj
@bj

@ri
D bi

2

@bjbj

@ri
D bi

2

@b � b
@ri

D 0;

so that

h ec � r .ec � b/ i� D


1� �2

2
ıij

�
@bj

@ri
D 1 � �2

2

@bi

@ri
D 1 � �2

2
r � b;

and therefore

�

c � r� @f

@�

�

�

D c
1 � �2
2

@bi

@ri

@f

@�
:

By combining both results we find for Eq. (4.10)

�

.ui C ci/
@�

@ri

@f

@�

�

�

D c
1 � �2
2

@bi

@ri

@f

@�
:

D. For the next term we use

�
@ui

@t



@f

@c
eci C

�
bi

c
� �eci

c

�
@f

@�

� �

�

D @ui

@t



@f

@c
�bi C 1 � �2

c
bi
@f

@�

�

;

where the average operator acts only on h eci i� D �bi.
E. The second last term is given by

f1 C f2 D �
�
�
uj C cj

� @ui

@rj



@f

@c
eci C

�
bi

c
� �eci

c

�
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� �

�

;
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where

f1 D �
�

uj
@ui

@rj
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eci C

�
bi
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c

�
@f
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�
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cj
@ui

@rj



@f

@c
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c
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c

�
@f
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� �

�

:

The first average, f1, can easily be solved with the results from the preceding
term, and we obtain

f1 D �uj
@ui

@rj



@f

@c
�bi C 1 � �2

c
bi
@f

@�

�

:

The second average, f2, can be simplified by using cj D cecj to obtain

f2 D �
�

cj
@ui

@rj



@f

@c
eci C

�
bi

c
� �eci

c

�
@f

@�

� �

�

D �
�
@ui

@rj



@f

@c
cecjeci C �

ecjbi � �ecjeci
� @f

@�

� �

�

:

With the previous result

˝
eciecj

˛
�

D �
ıij � bibj

� 1 � �2
2

C �2bibj (4.13)

we find

�
�

cj
@ui

@rj



@f

@c
eci C

�
bi

c
� �eci

c

�
@f

@�

� �

�

D �@ui

@rj

�
@f

@c
c



�
ıij � bibj

� 1 � �2
2

C �2bibj

�

C



�bjbi � �
�
�
ıij � bibj

� 1 � �2

2
C �2bibj

��
@f

@�

�

: (4.14)

F. The last term can be written as
�

˝�ijkcjbk



@f

@c
eci C



bi

c
� �eci

c

�
@f

@�

� �

�

D 0:

The last term vanishes for the following reasons:
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a. For the first term we obtain
�

˝�ijkcjbk
@f

@c
eci

�

�

D ˝�ijkc
˝
eciecj

˛
�

bk
@f

@c
D 0;

where we used cj D cecj. This term vanishes for i D j, since the Levi-Civita
tensor is zero for two identical indices, �iik D 0. From the considerations
made under point (C0b) we find, that

˝
eciecj

˛
�

also vanishes for any i ¤
j ¤ k. As an example, consider

�ijk
˝
eciecj

˛
�

bk D h ec1ec2 i� b3 � h ec1ec3 i� b2 C h ec3ec1 i� b2

� h ec3ec2 i� b1 C h ec2ec3 i� b1 � h ec2ec1 i� b3 D 0;

where we used Einstein’s summation convention.
b. The second term is described by

�

˝�ijkcjbk
bi

c

@f

@�

�

�

D ˝�ijk
˝
ecj
˛
�

bkbi
@f

@�
D ˝�ijk�bjbkbi

@f

@�
D 0;

where we used
˝
ecj
˛
�

D �bj. Obviously this term is zero, since �ijkbibjbk D 0

for any combination of i; j; and k.
c. The last term can be written as

�

˝�ijkcjbk
�eci

c

@f

@�

�

�

D ˝�ijk
˝
eciecj

˛
�

bk�
@f

@�
D 0;

where we used cj D cecj. This term is zero for the same reason as under
point a.

By combining all results we find

@f

@t
C .ui C c�bi/

@f

@ri
C c

1� �2

2

@bi

@ri

@f

@�
� @ui

@t



@f

@c
�bi C 1 � �2

c
bi
@f

@�

�

� uj
@ui

@rj



@f

@c
�bi C 1 � �2

c
bi
@f

@�

�

� @ui

@rj

�
@f

@c
c



�
ıij � bibj

� 1 � �2
2

C �2bibj

�

C
�

�bjbi � �



�
ıij � bibj

� 1 � �2
2

C �2bibj

��
@f

@�

�

D
�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

�

:

In the second line the second term in brackets can be simplified. By sorting all terms
with respect to � and c derivatives we obtain

@f

@t
C .ui C c�bi/

@f

@ri
(4.15)



204 4 Charged Particle Transport in a Collisionless Magnetized Plasma

C 1 � �2

2




c
@bi

@ri
C �

@ui

@ri
� 3�bibj

@ui

@rj
� 2bi

c

�
@ui

@t
C uj

@ui

@rj

��
@f

@�

C


1 � 3�2
2

bibj
@ui

@rj
� 1 � �2

2

@ui

@ri
� �bi

c

�
@ui

@t
C uj

@ui

@rj

��

c
@f

@c
D
�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

�

:

Problem 4.2 By assuming a constant radial flow velocity for the solar wind with
U D Urer and a radial interplanetary magnetic field pointing away from the sun
with b D er, derive the 1D focussed transport equation (4.17).

Solution The vector form of the gyrophase averaged transport equation (4.15) is

@f

@t
C .U C c�b/ � rf

C 1 � �2

2




cr � b C �r � U � 3�b � Œ.b � r/U� � 2b
c

�


@U
@t

C .U � r/U
��

@f

@�

�


�b
c

�


@U
@t

C .U � r/U
�

C 1 � �2

2
r � U � 1 � 3�2

2
b � Œ.b � r/U�

�

c
@f

@c

D
�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

�

;

where we used U for the background flow instead of u. Note that the spherical
coordinates of the background flow and magnetic field are given by

U D
0

@
Ur

0

0

1

A b D er D
0

@
br

0

0

1

A D
0

@
1

0

0

1

A ;

with Ur D const: and U
 D U� D 0, since the flow is purely radial and has no �-
or 
- component. Of course, b is a unit vector in radial direction with length one, so
that br D 1. Recall that the nabla operator in spherical coordinates is given by

r D er
@

@r
C e


1

r

@

@

C e�

1

r sin 


@

@�
: (4.16)

• The divergence of the vector U in spherical coordinates is then given by

r � U D 1

r2
@

@r

�
r2Ur

	C 1

r sin 


@

@

Œsin 
 U
 �C 1

r sin 


@U�

@�
D 2Ur

r
:

• It follows immediately that

r � b D 2

r
:
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• By considering the expression .b � r/U we need to transform the nabla operator
into spherical coordinates, bearing in mind that b D er, so that

b � r D @

@r
;

since er � er D 1, and er � e
 D 0 and er � e� D 0. Consider now

.b � r/U D @

@r
U D Ur

@er

@r
D 0;

since the unit vector er D .sin 
 cos�; sin 
 sin �; cos 
/ is independent of r.
Obviously, the same holds for

.U � r/U D Ur
@

@r
U D U2

r

@er

@r
D 0;

• Lastly, consider the term

.U C c�b/ � rf D .Ur C c�/
@f

@r
:

With that we obtain

@f

@t
C .Ur C c�/

@f

@r
C 1 � �2

r
.c C �Ur/

@f

@�
� 1 � �2

r
Urc

@f

@c
D
�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

:

(4.17)

Problem 4.3 Assume that the one spatial dimensional gyrotropic distribution
function can be expressed as

f .r; c; �; t/ D f�.r; c; t/H.��/C fC.r; c; t/H.�/;

where H.x/ denotes the Heaviside step function and f˙ refers to anti-sunward (fC) /
sunward (f�) hemispherical distributions. By substituting f D fCH.�/C f�H.��/
in the 1D focused transport equation (4.17), where the scattering term on the right-
hand side is given by

�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

D @

@�

�

�
�
1 � �2

� @f

@�

�

;

and by integrating over � separately from �1 to 0 and then from 0 to 1, show that

@f˙
@t

C
�

U ˙ c

2


 @f˙
@r

� 2U

r

c

3

@f˙
@c

C c

r
. fC � f�/ D �� . fC � f�/ ;
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where � � �.� D 0/ gives the rate of scattering across � D 0. Note that the form
of the scattering term is of diffusion in pitch-angle. The term � is the scattering
frequency.

Solution Here we use the following definition of the Heaviside step function,

H.x/ D
(
0 x < 0

1 x � 0
:

We will also make use of the following definitions,

Z

H.x/ dx D x H.x/C C1

Z

x H.x/ dx D x2

2
H.x/C C2

Z

x2 H.x/ dx D x3

3
H.x/C C3:

First, we substitute the definition of the distribution function f and obtain

@fCH.�/

@t
C @f�H.��/

@t
C .Ur C c�/

@fCH.�/

@r
C .Ur C c�/

@f�H.��/
@r

C 1 � �2

r
.c C �Ur/

@fCH.�/

@�
C 1 � �2

r
.c C �Ur/

@f�H.��/
@�

� 1 � �2
r

Urc
@fCH.�/

@c
� 1 � �2

r
Urc

@f�H.��/
@c

D @

@�

�

�
�
1 � �2� @fCH.�/

@�

�

C @

@�

�

�
�
1 � �2� @f�H.��/

@�

�

:

Since f˙ D f˙.r; c; t/ is a function of r; c; and t alone and the Heaviside step
function is a function of � alone, we find

H.�/
@fC
@t

C H.��/@f�
@t

C .Ur C c�/H.�/
@fC
@r

C .Ur C c�/H.��/@f�
@r

C 1 � �2

r
.c C �Ur/ fCı.�/� 1 � �2

r
.c C �Ur/ f�ı.�/

� 1 � �2
r

UrcH.�/
@fC
@c

� 1 � �2
r

UrcH.��/@f�
@c

D fC
@

@�

�
�
�
1 � �2

�
ı.�/

� � f�
@

@�

�
�
�
1 � �2� ı.�/�
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D Œ fC � f��
@

@�

�
�
�
1 � �2

�
ı.�/

	
;

where we used @H.˙�/=@� D ˙ı.�/, and where ı.x/ is the delta distribution.

A. Now we integrate this equation with respect to � from �1 to 0. Obviously,
terms that include H.�/ vanish. By considering each term separately we find
the following results.

• For the second term on the left-hand side we find

Z 0

�1
d� H.��/@f�

@t
D @f�

@t

Z 0

�1
d� H.��/ D @f�

@t

Z 1

0

d� H.�/

D @f�
@t
Œ�H.�/�10 D @f�

@t
;

where we used the transformation �� ! �.
• The fourth term on the left-hand side is given by

Z 0

�1
d� .Ur C c�/H.��/@f�

@r
D @f�

@r

Z 1

0

d� .Ur � c�/H.�/

D @f�
@r

�
Ur � c

2



:

• The fifth and sixth term on the left-hand side can be written as

Z 0

�1
d�

1 � �2

r
.c C �Ur/ fCı.�/�

Z 0

�1
d�

1 � �2
r

.c C �Ur/ f�ı.�/

D c

r
. fC � f�/ ;

since the delta distribution contributes only for � D 0.
• The eighth term on the left-hand side is

�
Z 0

�1
d�

1 � �2

r
UrcH.��/@f�

@c
D �@f�

@c

Urc

r

Z 0

�1
d�

�
1 � �2�H.��/

D �@f�
@c

Urc

r

�

1 � 1

3

�

D �2
3

@f�
@c

Urc

r
:

• The term on the right-hand side can be written as

Œ fC � f��
Z 0

�1
d�

@

@�

�
�
�
1 � �2

�
ı.�/

	 D Œ fC � f�� �.� D 0/:
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By combining all results we find for the integration from � D �1 to 0

@f�
@t

C @f�
@r

�
Ur � c

2



C c

r
. fC � f�/ � 2

3

@f�
@c

Urc

r
D Œ fC � f�� �.� D 0/:

B. Now we integrate this equation with respect to � from 0 to 1. Similarly, terms
that include H.��/ vanish and by considering each term separately we find the
following results.

• The first term is

Z 1

0

d� H.�/
@fC
@t

D @fC
@t

Z 1

0

d� H.�/ D @fC
@t

Œ�H.�/�10 D @fC
@t
:

• The third term is

Z 1

0

d� .Ur C c�/H.�/
@fC
@r

D @fC
@r

Z 1

0

d� .Ur C c�/H.�/

D @fC
@r

�
Ur C c

2



:

• The fifth and sixth term are similar to the case above and can be written as

Z 1

0

d�
1 � �2

r
.c C �Ur/ fCı.�/�

Z 1

0

d�
1 � �2

r
.c C �Ur/ f�ı.�/

D c

r
. fC � f�/ ;

since the delta distribution contributes only for � D 0.
• The eighth term is

�
Z 1

0

d�
1 � �2

r
UrcH.�/

@fC
@c

D �@fC
@c

Urc

r

Z 1

0

d�
�
1 � �2�H.�/

D �@fC
@c

Urc

r

�

1 � 1

3

�

D �2
3

@fC
@c

Urc

r
:

• The term on the right-hand side is given by

Œ fC � f��
Z 1

0

d�
@

@�

�
�
�
1 � �2

�
ı.�/

	 D � Œ fC � f�� �.� D 0/;

where (mathematically somewhat simple) the delta function contributes only
for � D 0 and was set to 1.
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By combining all results we find

@fC
@t

C @fC
@r

�
Ur C c

2



C c

r
. fC � f�/ � 2

3

@fC
@c

Urc

r
D � Œ fC � f�� �.� D 0/:

By combining all results from the integrations with respect to � from �1 to 0
and from 0 to1, we obtain the two equations

@f˙
@t

C @f˙
@r

�
Ur ˙ c

2



C c

r
. fC � f�/ � 2

3

@f˙
@c

Urc

r
D � Œ fC � f�� �;

where � � �.� D 0/ gives the rate of scattering across � D 0.

4.2 Quasi-Linear Transport Theory of Charged Particles:
Derivation of the Scattering Tensor

The relativistic Vlasov equation is given by

@f

@t
C p

m
� rf C q

�

E C p 
 B
m

�

� @f

@p
D 0: (4.18)

Problem 4.4 Rewrite the relativistic Vlasov equation (4.18) using a mean field
expansion for the electromagnetic variables, assuming that the particle distribution
function is co-moving with the plasma (thus ensuring that E0 D 0), and neglecting
the fluctuating electric field term. Hence derive (4.20) and (4.22).

Solution The electric field is given by E D E0 C ıE and by setting E0 D 0 and
neglecting electric turbulence (ıE 	 0) we find for the Vlasov equation

@f

@t
C p

m
� rf C q

m
p 
 B � @f

@p
D 0:

By using

B D B0 C ıB h B i D B0 h ıB i D 0

f D f0 C ıf h f i D f0 h ıf i D 0;
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we can write for the Vlasov equation

@f0
@t

C @ıf

@t
C p

m
� rf0 C p

m
� rıf C q

m
p 
 B0 � @f0

@p

C q

m
p 
 ıB � @f0

@p
C q

m
p 
 B0 � @ıf

@p
C q

m
p 
 ıB � @ıf

@p
D 0: (4.19)

Now we average Eq. (4.19) over an ensemble of particles. Note that all terms with
fluctuations (ıf and ıB) vanish except the last term on the left hand side. We are left
with

@f0
@t

C p
m

� rf0 C q

m
p 
 B0 � @f0

@p
C q

m

�

p 
 ıB � @ıf
@p

�

D 0: (4.20)

By subtracting Eq. (4.20) from Eq. (4.19) we find

@ıf

@t
C p

m
� rıf C q

m
p 
 B0 � @ıf

@p

D � q

m
p 
 ıB � @f0

@p
� q

m
p 
 ıB � @ıf

@p
C q

m

�

p 
 ıB � @ıf
@p

�

: (4.21)

We consider now the three terms on the right-hand side of Eq. (4.21). The expression
in front of the derivations @f0=@p and @ıf=@p can be interpreted as a force F
(compare the units),

F D q

m
p 
 ıB:

Since the turbulent magnetic fields are small perturbations to the constant magnetic
background field B0, we may consider the force term to be small as well. In fact,
this force term has to be significantly small so that we can introduce the time scales

	c � t � 	f0 ;

where 	f0 represents the time scale on which the force term affects the evolution
of the particle distribution f0 and Eq. (4.21) cannot be applied. We can also find a
time scale 	c, where the two-point two-time correlation function for the magnetic
fluctuations becomes negligibly small (see Chap. 5.4 in [5]).

Again, the force term has to be significantly small so that within the time scale t
(where f0 is unaffected by the force term) the variation ıf , which is generated by the
force term, remains much smaller than f0. (For a detailed description see [4]) In this
case the last two terms on the right-hand side of Eq. (4.21) can be neglected and we
find

@ıf

@t
C p

m
� rıf C q

m
p 
 B0 � @ıf

@p
D � q

m
p 
 ıB � @f0

@p
: (4.22)
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Problem 4.5 Derive the relations (4.23a)–(4.23c) and hence show that

� q

m

�
p 
 ıB � rpf0

� D �˝
B

�
ıBx sin � � ıBy cos�

� @f0
@

:

Solution By transforming the momentum vector p from Cartesian coordinates
into spherical coordinates .px; py; pz/ ! .p; �; 
/ we have for each component

px D p sin 
 cos� py D p sin 
 sin � pz D p cos 
:

For the transformation of the Cartesian partial derivatives into spherical coordinates
we use the Jacobian matrix with

J D

0

B
@

@px
@p

@px
@


@px
@�

@py

@p
@py

@


@py

@�
@pz
@p

@pz
@


@pz
@�

1

C
A D

0

@
sin 
 cos� p cos 
 cos� �p sin 
 sin�
sin 
 sin � p cos 
 sin � p sin 
 cos�

cos 
 �p sin 
 0

1

A :

The inverse Jacobian matrix is then given by

J�1 D

0

B
@

sin 
 cos� sin 
 sin � cos 

cos 
 cos�

p
cos 
 sin�

p � sin 

p

� sin�
p sin 


cos �
p sin 
 0

1

C
A ;

so that

0

B
@

@
@px
@
@py
@
@pz

1

C
A D

0

B
B
@

sin 
 cos� cos 
 cos�
p � sin�

p sin 


sin 
 sin� cos 
 sin�
p

cos�
p sin 
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 � sin 

p 0

1

C
C
A

0

B
@

@
@p
@
@

@
@�

1

C
A ;

where we used the transposed Jacobian matrix .J�1/T . We find the relations (see
Eq. (5.33) in [5])

@

@px
D sin 
 cos�

@

@p
C cos 
 cos�

p

@

@

� sin �

p sin 


@

@�
(4.23a)

@

@py
D sin 
 sin �

@

@p
C cos 
 sin �

p

@

@

C cos�

p sin 


@

@�
(4.23b)

@

@pz
D cos 


@

@p
� sin 


p

@

@

: (4.23c)
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With the momentum-vector in spherical coordinates and ıB D .ıBx; ıBy; ıBz/ we
find for the cross product

p 
 ıB D
0

@
p sin 
 sin�ıBz � p cos 
ıBy

p cos
ıBx � p sin 
 cos�ıBz

p sin 
 cos�ıBy � p sin 
 sin �ıBx

1

A ;

so that

.p 
 ıB/ � rpf0 D �
p sin 
 sin �ıBz � p cos 
ıBy

� @f0
@px

C .p cos 
ıBx � p sin 
 cos�ıBz/
@f0
@py

C �
p sin 
 cos�ıBy � p sin 
 sin �ıBx

� @f0
@pz

:

Now we substitute the Cartesian partial derivatives by (4.23a)–(4.23c). On assuming
that the averaged distribution function is gyrotropic, i.e., independent of the particle
phase angle �, we neglect any derivatives with respect to � and find

.p 
 ıB/ � rpf0

D �
p sin 
 sin�ıBz � p cos
ıBy

�
�

sin 
 cos�
@

@p
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�
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C �
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�
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p
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@


�

f0:

Note that the terms proportional to @f0=@p vanish, so that

.p 
 ıB/ � rpf0 D �
sin 
 sin �ıBz � cos 
ıBy

�
cos 
 cos�

@f0
@


C .cos 
ıBx � sin 
 cos�ıBz/ cos 
 sin �
@f0
@


� �
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 cos�ıBy � sin 
 sin �ıBx

�
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@f0
@

:

Furthermore, terms proportional to ıBz vanish. By expanding and collecting all
remaining terms proportional to ıBx and ıBy we obtain

.p 
 ıB/ � rpf0 D �
sin �ıBx � cos�ıBy

	 @

@

:
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With the gyrofrequency j˝j D qB=m we obtain finally

� q

m
.p 
 ıB/ � rpf0 D �j˝j

B

�
sin �ıBx � cos�ıBy

	 @f0
@

:

4.3 Hydrodynamic Description of Energetic Particles

Suppose that wave propagation is one-dimensional and is represented by a
wave vector k D kex in Cartesian coordinates .x; y; z/ and that @=@y D @=@z D
0. By writing u D .ux; uy; uz// and B D .Bx;By;Bz/ we find for the MHD
equations (MHD-1)–(MHD-6) (see Sect. 3.9) the 1D transport equations

@�

@t
C @

@x
.�ux/ D 0 (T-1)

�
dux

dt
D � @

@x
.Pg C Pc/ � 1

2�

@

@x

�
B2x C B2z

�
(T-2)

�
duy

dt
D Bx

�

@By

@x
(T-3)

�
duz

dt
D Bx

�

@Bz

@x
(T-4)

Bx D const: (T-5)

@By

@t
D @

@x

�
uyBx � uxBy

	
(T-6)

@Bz

@t
D @

@x
ŒuzBx � uxBz� (T-7)

dPg

dt
C 
gPg

@ux

@x
D 0 (T-8)

dPc

dt
C 
cPc

@ux

@x
� � @

2Pc

@x2
D 0; (T-9)

where the convective derivative is given by

d

dt
D @

@t
C ux

@

@x
: (4.24)
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Problem 4.6 Derive the dispersion relation (4.27) for linear wave modes in a
cosmic ray mediated plasma.

Solution First we linearize the above Eqs. (T-1)–(T-9) about a uniform equilib-
rium state, where

� D �0 C ı� Pc D Pc0 C ıPc Pg D Pg0 C ıPg

B D
0

@
Bx

By0 C ıBy

Bz0 C ıBz

1

A u D
0

@
ıux

ıuy

ıuz

1

A :

Note that u0 D 0 and Bx D const: and that any derivative ıux@=@x will be of second
order in the small quantity and can therefore be neglected. Thus, the convective
derivative reduces to d=dt D @=@t. The linearized 1D transport equations can then
be written as

@ı�

@t
C �0

@ıux

@x
D 0

�0
@ıux

@t
C @ıPg

@x
C @ıPc

@x
C By0

�

@ıBy

@x
C Bz0

�

@ıBz

@x
D 0

�0
@ıuy

@t
� Bx

�

@ıBy

@x
D 0

�0
@ıuz

@t
� Bx

�

@ıBz

@x
D 0

@ıBy

@t
� Bx

@ıuy

@x
C By0

@ıux

@x
D 0

@ıBz

@t
� Bx

@ıuz

@x
C Bz0

@ıux

@x
D 0

@ıPg

@t
C 
gPg

@ıux

@x
D 0

@ıPc

@t
C 
cPc

@ıux

@x
� �

@2ıPc

@x2
D 0:

We seek solutions of the form � D �0 exp Œi.!t � kx/� (compare with Prob-
lem 2.10), so that the derivatives can be written as

@�

@t
D i!�

@�

@x
D �ik�

@2�

@x2
D �k2�;

where � can be substituted by any of the variables ı�; ıB; ıu, and ıP. By substitut-
ing these results back into the transport equations, multiplying each equation by the
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complex number �i, dividing by k, and using Vp D !=k we obtain

Vpı� � �0ıux D 0

Vp�0ıux � ıPg � ıPc � By0

�
ıBy � Bz0

�
ıBz D 0

Vp�0ıuy C Bx

�
ıBy D 0 (4.25a)

Vp�0ıuz C Bx

�
ıBz D 0 (4.25b)

VpıBy C Bxıuy � By0ıux D 0 (4.25c)

VpıBz C Bxıuz � Bz0ıux D 0 (4.25d)

VpıPg � 
gPg0ıux D 0

VpıPc � 
cPc0ıux � i�kıPc D �
Vp � i�k

�
ıPc � 
cPc0ıux D 0:

We combine now Eqs. (4.25a) and (4.25c) to substitute ıuy and Eqs. (4.25b)
and (4.25d) to substitute ıuz and obtain

VpBy0ıux � �
V2

p � V2
x

�
ıBy D 0

VpBz0ıux � �
V2

p � V2
x

�
ıBz D 0;

where we used V2
x D B2x=��0. The set of equations reduces to

Vpı� � �0ıux D 0

Vp�0ıux � ıPg � ıPc � By0

�
ıBy � Bz0

�
ıBz D 0

VpBy0ıux � �
V2

p � V2
x

�
ıBy D 0

VpBz0ıux � �
V2

p � V2
x

�
ıBz D 0

VpıPg � 
gPg0ıux D 0

VpıPc � 
cPc0ıux � i�kıPc D �
Vp � i�k

�
ıPc � 
cPc0ıux D 0:

It is convenient to rewrite this set of equations in matrix form

M D

0

B
B
B
B
B
B
B
@

Vp ��0 0 0 0 0

0 Vp�0 �By0=� �Bz0=� 0 0

0 VpBy0 �.V2
p � V2

x / 0 0 0

0 VpBz0 0 �.V2
p � V2

x / 0 0

0 �
gPg0 0 0 Vp 0

0 �
gPc0 0 0 0 .Vp � i�k/

1

C
C
C
C
C
C
C
A

;
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so that

M � ı� D 0;

where the vector ı� D .ı�; ıux; ıBy; ıBz; ıPg; ıPc/
T . As in Problem 2.10, the

trivial solution is given by ı� D 0, and the non-trivial solutions are given by the
eigenvalues of the matrix M. Therefore, we calculate the characteristic polynomial
det.M/ D 0. Developing for the first column we find

det.M/ D Vp det

0

B
B
B
B
B
@

Vp�0 �By0=� �Bz0=� 0 0

VpBy0 �.V2
p � V2

x / 0 0 0

VpBz0 0 �.V2
p � V2

x / 0 0

�
gPg0 0 0 Vp 0

�
gPc0 0 0 0 .Vp � i�k/

1

C
C
C
C
C
A

:

The remaining determinant can readily be calculated and we obtain

det.M/ D Vp

h
V2

p�0
�
V2

p � V2
x

�2
.Vp � i�k/ � B2y0

�
V2

p .V
2
p � V2

x /.Vp � i�k/

� B2z0
�

V2
p .V

2
p � V2

x /.Vp � i�k/ � 
gPg0
�
V2

p � V2
x

�2
.Vp � i�k/

�
cPc0
�
V2

p � V2
x

�2
Vp

i
D 0;

where the remaining determinant was developed for the first row. The factor�
V2

p � V2
x

�
can be pulled out of the square brackets. We also combine the second

and third term in square brackets, leading to

0 D Vp
�
V2

p � V2
x

� �
V2

p�0
�
V2

p � V2
x

�
.Vp � i�k/ � B2y0 C B2z0

�
V2

p .Vp � i�k/

� 
gPg0
�
V2

p � V2
x

�
.Vp � i�k/ �
cPc0

�
V2

p � V2
x

�
Vp
	
:

Recall that V2
x D B2x=��0, we can combine the V2

x summand in the first term with
the second term by using B20 D B2x C B2y0 C B2z0. We also divide by �0 to obtain

0 D Vp
�
V2

p � V2
x

�



V4
p .Vp � i�k/ � B20

��0
V2

p .Vp � i�k/

� 
gPg0

�0

�
V2

p � V2
x

�
.Vp � i�k/ �
cPc0

�0

�
V2

p � V2
x

�
Vp

�

:
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By using the definitions

V2
A D B20

��0
a2g0 D 
gPg0

�0
a2c0 D 
cPc0

�0
a2� D a2g0 C a2c0 (4.26)

we obtain

0 D Vp
�
V2

p � V2
x

� �
V4

p .Vp � i�k/ � V2
AV2

p .Vp � i�k/

� a2g0
�
V2

p � V2
x

�
.Vp � i�k/ �a2c0

�
V2

p � V2
x

�
Vp
	
:

We reorder the expressions in square brackets from highest to lowest order in Vp

and obtain the dispersion relation

0 D Vp
�
V2

p � V2
x

� �
V5

p � i�kV4
p � �

V2
A C a2�

�
V3

p

C i�k
�
V2

A C a2g0
�

V2
p C a2�V2

x Vp �i�ka2g0V
2
x

	
: (4.27)

Problem 4.7 By considering the long wavelength limit of the dispersion rela-
tion (4.27), show that the fast and slow magnetosonic modes are damped by cosmic
rays, since the waves propagate approximately according to

Vp D Vf ;s C i�kˇ C O
�
.�k/2

�
; (4.28)

where

ˇ D
a2c0

�
V2

f ;s � V2
x




2
h�

V2
A C a2�

�
V2

f ;s � 2a2�V2
x

i : (4.29)

Solution We begin by considering only the square bracket in the dispersion
relation (4.27), which is given by

V5
p � i�kV4

p � �
V2

A C a2�
�

V3
p

C i�k
�
V2

A C a2g0
�

V2
p C a2�V2

x Vp � i�ka2g0V
2
x D 0: (4.30)

By setting � D 0, i.e., no particle diffusion, we obtain

Vp
�
V4

p � �
V2

A C a2�
�

V2
p C a2�V2

x

	 D 0; (4.31)

which has the solutions Vp D 0 and (by solving the biquadratic formula)

V2
p D V2

f ;s D 1

2




V2
A C a2� ˙

q
�
V2

A C a2�
�2 � 4a2�V2

x

�

; (4.32)
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the speed for the fast (C) and slow (�) magnetosonic modes. The difference
between these wave modes and those derived in the usual MHD theory (see Prob-
lem 3.19) is the presence of the mixed sound speed a� D p

.
gPg0 C 
cPc0/=�0,
indicating that the cosmic rays couple to the background plasma and alter the phase
speed for these wave modes.

We assume now that the phase speed Vp (now with � ¤ 0) can be approximated
by the fast/slow wave modes plus a small perturbation, Vp D Vf ;s C "ˇ, where
" D i�k is a small but non-zero quantity and ˇ (independent of �) remains to be
determined. All appearing orders (up to the fifth) can be written as

Vp D Vf ;s C "ˇ V4
p D V4

f ;s C 4"V3
f ;sˇ C O

�
"2
�

V2
p D V2

f ;s C 2"Vf ;sˇ C O
�
"2
�

V5
p D V5

f ;s C 5"V4
f ;sˇ C O

�
"2
�

V3
p D V3

f ;s C 3"V2
f ;sˇ C O

�
"2
�
:

Substituting these approximations into Eq. (4.30) and using " � i�k we obtain

V5
f ;s C 5"V4

f ;sˇ � "
�

V4
f ;s C

����4"V3
f ;sˇ



� �

V2
A C a2�

� �
V3

f ;s C 3"V2
f ;sˇ

�

C "
�
V2

A C a2g0
� �

V2
f ;s C����2"Vf ;sˇ

�C a2�V2
x

�
Vf ;s C "ˇ

� � "a2g0V2
x D 0:

The two terms of order O."2/ may be neglected for further calculations. We rewrite
the equation in terms of orders of ", which leads to

Vf ;s
�
V4

f ;s � �
V2

A C a2�
�

V2
f ;s C a2�V2

x

	

� "V4
f ;s � "a2g0V

2
x C "

�
V2

A C a2g0
�

V2
f ;s

C 5"V4
f ;sˇ � 3"

�
V2

A C a2�
�

V2
f ;sˇ C a2�V2

x "ˇ D 0:

Obviously, the first three terms is zero since Vf ;s is a solution to Eq. (4.31). All
remaining terms include ", thus, we may divide the equation by " ¤ 0 and obtain

�V4
f ;s � a2g0V

2
x C �

V2
A C a2g0

�
V2

f ;s C ˇ
�
5V4

f ;s � 3 �V2
A C a2�

�
V2

f ;s C a2�V2
x

	 D 0:

By pulling the first three terms to the right-hand side and dividing the equation by
the expression in square brackets we obtain

ˇ D N

D
D

V4
f ;s �

�
V2

A C a2g0



V2

f ;s C a2g0V
2
x

5V4
f ;s � 3

�
V2

A C a2�
�

V2
f ;s C a2�V2

x

: (4.33)

The numerator can be simplified by using the relation a2g0 C a2c0 D a2�, leading to

N D V4
f ;s � �

V2
A C a2g0

�
V2

f ;s C a2g0V
2
x
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D �
V4

f ;s � �
V2

A C a2�
�

V2
f ;s C a2�V2

x

	C a2c0
�
V2

f ;s � V2
x

�

D a2c0
�
V2

f ;s � V2
x

�
; (4.34)

where the term in square brackets is zero, since Vf ;s is a solution to Eq. (4.31) (see
above). The dominator can be simplified in a similar manner to obtain

D D 5V4
f ;s � 3 �V2

A C a2�
�

V2
f ;s C a2�V2

x

D 4V4
f ;s � 2 �V2

A C a2�
�

V2
f ;s C �

V4
f ;s � �

V2
A C a2�

�
V2

f ;s C a2�V2
x

	

D 4V4
f ;s � 2 �V2

A C a2�
�

V2
f ;s: (4.35)

Using V4
f ;s D �

V2
A C a2�

�
V2

f ;s � a2�V2
x (see Eq. (4.31) above) we can rewrite the

expression as

D D 4
�
V2

A C a2�
�

V2
f ;s � 4a2�V2

x � 2
�
V2

A C a2�
�

V2
f ;s

D 2
�
V2

A C a2�
�

V2
f ;s � 4a2�V2

x : (4.36)

Substituting both results for N and D back into Eq. (4.33) we obtain the expression
for ˇ in Eq. (4.29).

Problem 4.8 Show that in the opposite limit, short wavelength modes decouple
from the cosmic rays in that they propagate at the thermal magnetosonic speed, but
are nonetheless damped by cosmic rays since

Vp D Vf ;s C i
�

2�k
; (4.37)

where Vf ;s is the fast/slow magnetosonic speed (see previous problem) for the
thermal plasma (i.e., the dispersion relation contains only the thermal pressure Pg0

with no contribution from Pc0), and

� D a2c0
�
V2

p � V2
x

�

2
h�

V2
A C a2g0



V2

f ;s � 2a2g0V
2
x

i : (4.38)

Solution First, since Vf ;s is the fast/slow magnetosonic speed for the thermal
plasma, it follows that a2c0 D 0 and, therefore, a2� D a2g0 C a2c0 D a2g0. Therefore,
Eq. (4.31) can be written as

V4
f ;s � �

V2
A C a2g0

�
V2

f ;s C a2g0V
2
x D 0: (4.39)

As before we begin with Eq. (4.30) and assume that the phase speed Vp can be
approximated by the fast/slow modes plus a small perturbation, Vp D Vf ;s C "�,
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where the perturbation is given by " D 1=i�k and � has to be determined. By
substituting " into Eq. (4.30) we find

V5
p � 1

"
V4

p � �
V2

A C a2�
�

V3
p C 1

"

�
V2

A C a2g0
�

V2
p C a2�V2

x Vp � 1

"
a2g0V

2
x D 0:

(4.40)

All appearing orders of Vp (up to the fifth) can be written as

Vp D Vf ;s C "� V4
p D V4

f ;s C 4"V3
f ;s�C O

�
"2
�

V2
p D V2

f ;s C 2"Vf ;s�C O
�
"2
�

V5
p D V5

f ;s C 5"V4
f ;s�C O

�
"2
�

V3
p D V3

f ;s C 3"V2
f ;s�C O

�
"2
�
: (4.41)

Substituting these approximations into Eq. (4.40) and multiplying the equation with
" we obtain

"
h
V5

f ;s C
����5"V4

f ;s�
i

� �
V4

f ;s C 4"V3
f ;s�

	 � "
�
V2

A C a2�
� h

V3
f ;s C

����3"V2
f ;s�

i

C �
V2

A C a2g0
� �

V2
f ;s C 2"Vf ;s�

	C "a2�V2
x

�
Vf ;s C��"�

	 � a2g0V
2
x D 0: (4.42)

The three terms of order O."2/ will be neglected for further calculations. In the
following we rewrite the equation in terms of orders of ", leading to

� V4
f ;s C �

V2
A C a2g0

�
V2

f ;s � a2g0V
2
x C "V5

f ;s � "
�
V2

A C a2�
�

V3
f ;s C "a2�V2

x Vf ;s

C 2"�
�
V2

A C a2g0
�

Vf ;s � 4�"V3
f ;s D 0: (4.43)

Obviously, the first three terms are zero because of relation (4.39). All remaining
terms include an ", so we may divide the equation by " ¤ 0. We may also divide by
Vf ;s for simplification. In the last line we also pull � out,

V4
f ;s � �

V2
A C a2�

�
V2

f ;s C a2�V2
x � 2�

�
2V2

f ;s � �
V2

A C a2g0
�	 D 0: (4.44)

By pulling the term proportional to � to the right-hand side and dividing by the
expression in square brackets we obtain

� D N

D
D 1

2

V4
f ;s � �

V2
A C a2�

�
V2

f ;s C a2�V2
x

2V2
f ;s �

�
V2

A C a2g0


 : (4.45)

The numerator can be simplified by using the relation a2g0 C a2c0 D a2�, leading to

N D V4
f ;s � �

V2
A C a2�

�
V2

f ;s C a2�V2
x
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D �
V4

f ;s � �
V2

A C a2g0
�

V2
f ;s C a2g0V

2
x

	 � a2c0
�
V2

f ;s � V2
x

�

D �a2c0
�
V2

f ;s � V2
x

�
; (4.46)

where we used the relation (4.39) for the term in square brackets. We find

� D �1
2

a2c0

�
V2

f ;s � V2
x




2V2
f ;s �

�
V2

A C a2g0


 : (4.47)

However, since " D 1=i�k, we have to multiply by i=i, leading to

Vp D Vf ;s � i
�

�k
: (4.48)

Problem 4.9 Derive Burgers’ equation

@u1x
@	

C ˛u1x
@u1x
@�

D �
@2u1x
@�2

(4.49)

from the O."2/ expansion of the magnetized fluid equations, where

˛ D
h�

g C 1

�
a2g0 C .
c C 1/ a2c0

i �
V2

p � V2
x

�C 3
�
V2

AV2
p � a2�V2

x

�

2
��

a2� C V2
A

�
V2

p � 2a2�V2
x

	 (4.50)

and

� D �a2c0
�
V2

p � V2
x

�

2
��

a2� C V2
A

�
V2

p � 2a2�V2
x

	 : (4.51)

Solution We begin with the 1D MHD transport equations (T-1)–(T-9) and
normalize the set of equations to obtain a dimensionless description. Using the
method of multiple scales (see Problem 2.16) we introduce a time scale T such
that the relationship

VpT

L
D 1 (4.52)

holds. We also introduce the following normalizations,

x D LNx t D TNt B D B0 NB
Pg;c D Pg0;c0 NPg;c � D �0 N� u D Vp Nu: (4.53)
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We obtain

@ N�
@Nt C @

@Nx . N�Nux/ D 0 (4.54a)

N�d Nux

dNt D � Na2g0

g

@ NPg

@Nx � Na2c0

c

@ NPc

@Nx � NV2
A

2

@

@Nx
� NB2x C NB2z

�
(4.54b)

N�d Nuy

dNt D NV2
A

NBx
@ NBy

@Nx (4.54c)

N�d Nuz

dNt D NV2
ABx

@ NBz

@Nx (4.54d)

NBx D const: (4.54e)

@ NBy

@Nt D @

@Nx
�Nuy NBx � Nux NBy

	
(4.54f)

@ NBz

@Nt D @

@Nx
�Nuz NBx � Nux NBz

	
(4.54g)

d NPg

dNt C 
g NPg
@Nux

@Nx D 0 (4.54h)

d NPc

dNt C 
c NPc
@Nux

@Nx � �
@2 NPc

@Nx2 D 0; (4.54i)

where the long wavelength parameter is defined as � D �=.VpL/, and where we
used the definitions (4.26). The convective derivative is given by

d

dNt D @

@Nt C @

@Nx : (4.55)

Similar to Problem 2.16 we introduce fast and slow variables � D Nx � Nt and 	 D "Nt,
with

@

@Nx D @

@�

@

@Nt D "
@

@	
� @

@�
;

together with the expansions

N� D 1C " N�1 C : : : Nux D "Nu1x C : : : Nuz D "Nu1z C : : :

NBz D NB0z C " NB1z C : : : NPg D 1C " NP1g C : : : NPc D 1C " NP1c C : : : ;

where it is convenient to assume Nuy D 0 and NBy D 0.
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Note that for all further calculations in this Problem we will omit the bars over the
various quantities with the exception of the sound speeds and the Alfvén speed,

Nag0;c0 D ag0;c0

Vp

NVA D VA

Vp
(4.56)

Now we derive a general form of the set of equations with expansions to the second
order:

Equation (T-1) is

"2
@�1

@	
� "@�

1

@�
� "2 @�

2

@�
C "

@u1x
@�

C "2
@u2x
@�

C "2�1
@u1x
@�

C "2u1x
@�1

@�
D 0: (4.57)

Equation (T-2) is

"2
@u1x
@	

� "
@u1x
@�

� "2 @u2x
@�

� "2�1
@u1x
@�

C "2u1x
@u1x
@�

D �" Na2g0

g

@P1g
@�

� "2 Na2g0

g

@P2g
@�

� "
Na2c0

c

@P1c
@�

� "2
Na2c0

c

@P2c
@�

� " NV2
AB0z

@B1z
@�

� "2 NV2
AB0z

@B2z
@�

� "2 NV2
AB1z

@B1z
@�
: (4.58)

Equation (T-4) is

"2
@u1z
@	

� "@u1z
@�

� "2
@u2z
@�

� "2�1 @u1z
@�

C "2u1x
@u1z
@�

D " NV2
ABx

@B1z
@�

C "2 NV2
ABx

@B2z
@�
: (4.59)

Note that Bx is normalized.
Equation (T-7) is

"2
@B1z
@	

� "@B1z
@�

� "2
@B2z
@�

(4.60)

D "Bx
@u1z
@�

C "2Bx
@u2z
@�

� "B0z
@u1x
@�

� "2u1x
@B1z
@�

� "2B1z
@u1x
@�

� "2B0z
@u2x
@�
:

Equation (T-8) is

"2
@P1g
@	

� "
@P1g
@�

� "2 @P2g
@�

C "2u1x
@P1g
@�

C 
g"
@u1x
@�
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C 
g"
2 @u2x
@�

C 
g"
2P1g

@u1x
@�

D 0: (4.61)

Equation (T-9) is

"2
@P1c
@	

� "
@P1c
@�

� "2
@P2c
@�

C "2u1x
@P1c
@�

C 
c"
@u1x
@�

C 
c"
2 @u2x
@�

C 
c"
2P1g

@u1x
@�

� �"@
2P1c
@�2

� �"2
@2P2c
@�2

D 0: (4.62)

• The lowest order system of equations is then given by

@�1

@�
D @u1x

@�
�@B1z
@�

D Bx
@u1z
@�

� B0z
@u1x
@�

@u1x
@�

D Na2g0

g

@P1g
@�

C Na2c0

c

@P1c
@�

C NV2
AB0z

@B1z
@�

@P1g
@�

D 
g
@u1x
@�

�@u1z
@�

D NV2
ABx

@B1z
@�

@P1c
@�

D 
c
@u1x
@�
;

and we find immediately

�1 D u1x B1z D �Bxu1z C B0z u1x

u1x D Na2g0

g

P1g C Na2c0

c

P1c C NV2
AB0z B1z P1g D 
gu1x

u1z D � NV2
ABxB

1
z P1c D 
cu1x :

Substituting u1z in the expression for B1z gives

B1z D B0z u1x
1 � NV2

AB2x
D B0z u1x
1 � NV2

x

; (4.63)

where it can be shown from the normalizations that NV2
x D NV2

AB2x . Provided that
the relation

1 D Na2g0 C Na2c0 C
NV2

AB0z
2

1 � NV2
x

(4.64)

holds, we have the following eigenvector solutions

�
�1; u1x ; u

1
z ;B

1
z ;P

1
g;P

1
c

� D u1x

 

1; 1;�
NV2

ABxB0z
1 � NV2

x

;
B0z u1x
1 � NV2

x

; 
g; 
c

!

: (4.65)
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Note that the relation (4.64) is the normalized dispersion relation for the long
wavelength limit Eq. (4.31),

V4
p � �

V2
A C a2�

�
V2

p C a2�V2
x D 0: (4.66)

• The second order set of transport equations is given by (where we used the results
from (4.65))

�@�
2

@�
C @u2x
@�

D �@u1x
@	

� 2u1x
@u1x
@�

� @u2x
@�

C Na2g0

g

@P2g
@�

C Na2c0

c

@P2c
@�

C NV2
AB0z

@B2z
@�

D �@u1x
@	

� NV2
A

B0z
2
u1x

�
1 � NV2

x

�2
@u1x
@�

(4.67a)

NV2
ABx

@B2z
@�

C @u2z
@�

D �
NV2

ABxB0z
1� NV2

x

@u1x
@	

(4.67b)

�@B2z
@�

� Bx
@u2z
@�

C B0z
@u2x
@�

D � B0z
1 � NV2

x

@u1x
@	

� 2 B0z
1 � NV2

x

u1x
@u1x
@�

(4.67c)

@P2g
@�

� 
g
@u2x
@�

D 
g
@u1x
@	

C 
g
�

g C 1

�
u1x
@u1x
@�

@P2c
@�

� 
c
@u2x
@�

D 
c
@u1x
@	

C 
c .
c C 1/ u1x
@u1x
@�

� �
c
@2u1x
@�2

:

To derive Burger’s equation we transform equation (4.67b) to obtain an equation for
u2z , and substitute the result back into equation (4.67c), so that

� @B2z
@�

C NV2
AB2x

@B2z
@�

C
NV2

AB2xB0z
1 � NV2

x

@u1x
@	

C B0z
@u2x
@�

D � B0z
1 � NV2

x

@u1x
@	

� 2
B0z

1 � NV2
x

u1x
@u1x
@�
:

After substituting the relation NV2
x D NV2

AB2x in the second term on the left-hand side,
we pull the third and fourth term to the right-hand side, and multiply with �1, so
that

�
1 � NV2

x

� @B2z
@�

D B0z
1 � NV2

x

@u1x
@	

C
NV2

AB2xB0z
1 � NV2

x

@u1x
@	

C 2
B0z

1 � NV2
x

u1x
@u1x
@�

C B0z
@u2x
@�
:

(4.68)
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The first and second term on the right-hand side can be simplified by

B0z
1 � NV2

x

@u1x
@	

C
NV2

AB2xB0z
1 � NV2

x

@u1x
@	

D
�

1

1 � NV2
x

C NV2
AB2x

1 � NV2
x

�

B0z
@u1x
@	

D 1C NV2
x

1 � NV2
x

B0z
@u1x
@	
:

Substituting this result into Eq. (4.68) and dividing by 1 � NV2
x we find

@B2z
@�

D 1C NV2
x

�
1 � NV2

x

�2B0z
@u1x
@	

C 2
B0z

�
1 � NV2

x

�2 u1x
@u1x
@�

C B0z
1 � NV2

x

@u2x
@�
: (4.69)

Using this result to substitute @B2z=@� in the momentum equation (4.67a) we find

� @u2x
@�

C Na2g0


@u2x
@�

C @u1x
@	

C �

g C 1

�
u1x
@u1x
@�

�

C Na2c0


@u2x
@�

C @u1x
@	

C .
c C 1/ u1x
@u1x
@�

� � @
2u1x
@�2

�

C NV2
AB0z

"
1C NV2

x
�
1 � NV2

x

�2B0z
@u1x
@	

C 2
B0z

�
1 � NV2

x

�2 u1x
@u1x
@�

C B0z
1 � NV2

x

@u2x
@�

#

D �@u1x
@	

� NV2
A

B0z
2
u1x

�
1 � NV2

x

�2
@u1x
@�
:

We rearrange this equations to sort in terms of orders of ux and obtain

� @u2x
@�

C Na2g0
@u2x
@�

C Na2c0
@u2x
@�

C
NV2

AB0z
2

1 � NV2
x

@u2x
@�

C @u1x
@	

C Na2g0
@u1x
@	

C Na2c0
@u1x
@	

C NV2
AB0z

2 1C NV2
x

�
1 � NV2

x

�2
@u1x
@	

C Na2g0
�

g C 1

�
u1x
@u1x
@�

C Na2c0 .
c C 1/ u1x
@u1x
@�

C 3
NV2

AB0z
2

�
1 � NV2

x

�2 u1x
@u1x
@�

D Na2c0�
@2u1x
@�2

:
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The first line is zero because of the relation (4.64). We find

"

1C Na2g0 C Na2c0 C NV2
AB0z

2 1C NV2
x

�
1 � NV2

x

�2

#
@u1x
@	

C
"

Na2g0
�

g C 1

�C Na2c0 .
c C 1/C 3
NV2

AB0z
2

�
1 � NV2

x

�2

#

u1x
@u1x
@�

D Na2c0�
@2u1x
@�2

:

By using the relation (4.64) to substitute NV2
AB0z

2
=.1 � NV2

x / D 1 � Na2� in the square
brackets, we find

1

1 � NV2
x

��
1C Na2�

� �
1 � NV2

x

�C �
1 � Na2�

� �
1C NV2

x

�	 @u1x
@	

C 1

1 � NV2
x

˚�Na2g0
�

g C 1

�C Na2c0 .
c C 1/
	 �
1 � NV2

x

�C 3
�
1 � Na2�

��
u1x
@u1x
@�

D Na2c0�
@2u1x
@�2

:

In the first line, the expression in square brackets can be simplified to

�
1C Na2�

� �
1 � NV2

x

�C �
1 � Na2�

� �
1C NV2

x

� D 2
�
1 � Na2� NV2

x

�
;

and by multiplying the entire equation with 1 � NV2
x we obtain

2
�
1 � Na2� NV2

x

� @u1x
@	

C ˚�Na2g0
�

g C 1

�C Na2c0 .
c C 1/
	 �
1 � NV2

x

�

C3 �1� Na2�
��

u1x
@u1x
@�

D �
1 � NV2

x

� Na2c0�
@2u1x
@�2

:

Now, on dividing the equation by 2
�
1 � Na2� NV2

x

�
we obtain Burger’s equation

@u1x
@	

C ˛u1x
@u1x
@�

D �
@2u1x
@�2

(4.70)

with

˛ D
h
Na2g0
�

g C 1

�C Na2c0 .
c C 1/
i �
1 � NV2

x

�C 3
�
1 � Na2�

�

2
�
1 � Na2� NV2

x

�

� D Na2c0�
�
1 � NV2

x

�

2
�
1 � Na2� NV2

x

� :
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Note that this is the normalized form of Burger’s equation. Finally, we rewrite the
solution in a non-normalized form, so that

˛ D
h
a2g0

�

g C 1

�C a2c0 .
c C 1/
i �

V2
p � V2

x

�C 3
�
V4

p � a2�V2
p

�

2
�
V4

p � a2�V2
x

� :

By using the dispersion relation (4.66) we can transform the last term in the
numerator by 3

�
V4

p � a2�V2
p

� D 3
�
V2

AV2
p � a2�V2

x

�
, so that

˛ D
h
a2g0

�

g C 1

�C a2c0 .
c C 1/
i �

V2
p � V2

x

�C 3
�
V2

AV2
p � a2�V2

x

�

2
�
V4

p � a2�V2
x

� :

The denominator can be transformed in the same way as we transformed the solution
in Problem 4.7. For � we find

� D a2c0�
�
V2

p � V2
x

�

2
�
V4

p � a2�V2
x

� D a2c0�
�
V2

p � V2
x

�

2V2
p

�
2V2

p � �
V2

A C a2�
�	

D a2c0�
�
V2

p � V2
x

�

2
��

V2
A C a2�

�
V2

p � 2a2�V2
x

	 ;

where we used the dispersion relation (4.66) in the denominator. Note that �
resembles the long wavelength limit result (4.29). Note also that we transformed
� ! �, since we use the non-normalized form of the Burgers’ equation.

4.4 Application 1: Diffusive Shock Acceleration

Problem 4.10 Suppose that an upstream energetic particle distribution proportional
to p�a is convected into a shock with compression ratio r from upstream. In
the absence of particle injection at the shock itself, calculate the reaccelerated
downstream energetic particle spectrum, and explain what happens if a < q D
3r=.r1/ or a > q.

Solution The general solution for diffusive shock acceleration theory is given by

f .0; p/ D 3

u1 � u2
p�q

Z p

pinj

�
p0�q




u1f .�1; p0/C Q.p0/
4�p02

�
dp0

p0 ; (4.71)

where q D 3r=.r � 1/ and r D u1=u2 is the shock compression ratio, and pinj is
the injection momentum (compare also with Eq. (5.59) in [5]). Q.p/ denotes the
injection of particles at the shock.
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If there is no particle injection at the shock, i.e. Q.p/ D 0, and assuming that the
particle background distribution (upstream) is given by f .�1; p/ D Ap�a, we find

f .0; p/ D 3u1
u1 � u2

Ap�q
Z p

pinj

�
p0�q�a�1

dp0

D 3r

r � 1
Ap�q

Z p

pinj

�
p0�q�a�1

dp0: (4.72)

The integral is easily solved and we obtain

f .0; p/ D q
A

q � a
p�q

��
p0�q�a	p

p0Dpinj

D q
A

q � a

h
p�a � pq�a

inj p�q
i
; (4.73)

where we used q D 3r=.r � 1/.
• Case: a < q D 3r=.r � 1/. In this case the upstream spectrum f .�1; p/ is

harder (flatter) than the one that can be accelerated at the shock (see Fig. 4.1
as an example), then the transmitted spectrum (downstream) will be the harder
upstream spectrum,

f .0; p/ / p�a: (4.74)

Fig. 4.1 Qualitatively, shown are the two spectra for the case a < q. The transmitted downstream
spectrum is proportional to p�a
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Fig. 4.2 Qualitatively, shown are the two spectra for the case a > q. The transmitted downstream
spectrum is proportional to pq�a

inj p�q

• Case: a > q. In this case the upstream spectrum is softer (steeper) than the one
that can be accelerated at the shock (see Fig. 4.2 as an example), thus, the shock
accelerated spectrum will dominate,

f .0; p/ / pq�a
inj p�q: (4.75)

Problem 4.11 Suppose that a shock of compression ratio r accelerates n cm�3
particles injected as a monoenergetic source proportional to ı.p � p0/ at the shock,
so producing a downstream energetic particle spectrum / p�q. Now suppose
the shock propagates out of the system and the compressed gas relaxes back
to the ambient state. Let another shock propagate into the system and suppose
that this shock reaccelerates the decompressed accelerated power law spectrum
that was accelerated earlier. Assume no additional injection of particles into the
diffusive shock acceleration process. Compute the energetic particle distribution
reaccelerated at the second shock. Again, suppose that the second shock disappears
out of the system and the energetic particle spectrum decompresses again. Derive the
energetic particle spectrum if a third shock reaccelerates the previously accelerated
spectrum of particles. What can you infer about the effect of multiple accelerations
and decompressions of a spectrum of energetic particles by multiple shock waves?

Solution Similar to the preceding problem we begin with the general solution
for diffusive shock acceleration theory, Eq. (4.71). Consider now a shock that
propagates through a region with particle distribution f .�1; p0/; in this case the
distribution acts as an injection distribution f .�1; p0/ D Aı.p0 � p0/, see, e.g., [3].
Substituting this distribution into Eq. (4.71) we find with f .0; p/ � f .p/

f1.p/ D 3

u1 � u2
p�q

Z p

0

�
p0�q

u1Aı.p
0 � p0/

dp0

p0
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D 3u1
u1 � u2

Ap�q
Z p

0

�
p0�q�1

ı.p0 � p0/dp0: (4.76)

Note that pinj is set to zero here. This is somewhat arbitrarily; we just need to ensure
that 0 < p0 < p. The integral is easily solved by

f1.p/ D qAp�q .p0/
q�1 D Aq

p0

�
p

p0

��q

; (4.77)

where we used q D 3r=.r � 1/ D 3u1=.u1 � u2/.
Now the shock disappears from the system and the accelerated distribution f1.p/

decompresses, so that the momentum of every particle decreases. Let us denote the
new (decreased/decompressed) momentum with Op and the decompressed distribu-
tion function with Of1 .Op/, where Op is a function of the accelerated momentum p.
This distribution is taken as injection distribution into the second shock, so that the
accelerated distribution after the second shock is given by

f2.p/ D qp�q
Z p

p0

�
p0�q�1 Of1.p0/dp0: (4.78)

The question now is, how to derive Of1.p0/ from Eq. (4.77), i.e., how to describe the
decompression. To evaluate the decompression consider the collisionless transport
equation (see [5], Sects. 5.2 and 5.7)

@f

@t
C .u C v/ � rf � p

3
r � u

@f

@p
D 0: (4.79)

Obviously the force is described by

dp

dt
D �p

3
r � u: (4.80)

From Eq. (3.51), the continuity equation, we derive

r � u D �1
�

d�

dt
; (4.81)

where � is the background density. Substituting r � u we find

dp

dt
D p

3

1

�

d�

dt
! dp

p
D 1

3

d�

�
!

Z p2

p1

dp

p
D 1

3

Z �2

�1

d�

�
: (4.82)
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The integrals are easily solved and we obtain

p2
p1

D
�
�2

�1

�1=3
; (4.83)

where the indices 1 and 2 refer to two distinct scenarios. The idea is as follows:
Assume an unshocked region in space with background density �2. Suppose now
that a shock passes through that region, compressing the background material to
a higher density �1 > �2. After the shock has passed through that region the
density decompresses back to �2. Basically, index 1 can be interpreted as the shock
(compression), where the particles have gained momentum p. Index 2 refers to the
post-shock (decompression), when the momentum has decreased to Op. The shock
compression ratio is then r D �1=�2, so that

Op
p

D
�
1

r

�1=3
D r�1=3: (4.84)

For convenience we introduce r D R�3, so that Op D Rp.
Now, according to Liouville’s theorem, the distribution f is a constant along the

trajectory of a particle in phase space, implying that the distribution function after
decompression Of1.Op/ is equal to f1.p/ before decompression, therefore

Of1.Rp/ D f1.p/ ! Of1.p0/ D f1.p
0=R/; (4.85)

where we used the coordinate transformation p0 D Rp. We deduce that the
momentum of every particle decreases according to the scaling p ! Rp, which
means, that the shape of the distribution is retained but shifted down with a cutoff at
Rp0. In general, decompression means to change the momentum according to

p ! p

R
: (4.86)

• Substituting result (4.85) back into Eq. (4.78) we find

f2.p/ D qp�q
Z p

p0R

�
p0�q�1

f1.p
0=R/dp0; (4.87)

where, according to Eq. (4.77),

f1.p
0=R/ D Aq

p0

�
p0

p0R

��q

: (4.88)

Note that the lower limit of the integral in Eq. (4.87) has been changed to p0R to
accommodate the shifted cutoff of the distribution function. Substituting f1.p0=R/
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in Eq. (4.87) we find

f2.p/ D Aq2

p0

�
p

p0R

��q Z p

p0R

dp0

p0

D Aq2

p0

�
p

p0R

��q

ln

�
p

p0R

�

: (4.89)

Once the second shock has passed through, decompression leads to (p ! p=R)

f2.p=R/ D Aq2

p0

�
p

p0R2

��q

ln

�
p

p0R2

�

: (4.90)

• For the third shock the accelerated spectrum is given by

f3.p/ D qp�q
Z p

p0R2

�
p0�q�1

f2.p
0=R/dp0

D qp�q
Z p

p0R2

�
p0�q�1 Aq2

p0

�
p0

p0R2

��q

ln

�
p0

p0R2

�

dp0

D Aq3

p0

�
p

p0R2

��q Z p

p0R2
ln

�
p0

p0R2

�
dp0

p0

D Aq3

p0

�
p

p0R2

��q
1

2




ln

�
p

p0R2

��2
: (4.91)

Note that the already shifted cutoff as the lower integration limit has shifted again
by a factor of R to p0R ! p0R2. After decompressing we find

f3.p=R/ D Aq3

p0

�
p

p0R3

��q
1

2




ln

�
p

p0R3

��2
: (4.92)

• For the fourth shock we find

f4.p/ D qp�q
Z p

p0R3

�
p0�q�1

f3.p
0=R/dp0

D qp�q 1

2

Z p

p0R3

�
p0�q�1 Aq3

p0

�
p0

p0R3

��q 


ln

�
p0

p0R3

��2
dp0

D Aq4

p0

�
p

p0R3

��q
1

2

Z p

p0R3




ln

�
p0

p0R3

��2 dp0

p0

D Aq4

3 � 2p0

�
p

p0R3

��q 


ln

�
p

p0R3

��3
: (4.93)
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Note that the already shifted cutoff as the lower integration limit has shifted again
by a factor of R to p0R2 ! p0R3. After decompressing we find

f4.p=R/ D Aq4

3Šp0

�
p

p0R4

��q 


ln

�
p

p0R4

��3
: (4.94)

In general we find for the i-th shock:

fi.p=R/ D Aqi

.i � 1/Šp0
�

p

p0Ri

��q 


ln

�
p

p0Ri

��.i�1/
: (4.95)

It can be shown that for an infinite number of shocks the distribution function
approximates a power law,

f1.p/ / p�3: (4.96)



Chapter 5
The Transport of Low Frequency Turbulence

5.1 Mean Field Description of MHD Fluctuations

In this section we derive the transport equation for the small scale Elsässer
variables starting from the evolution equations for the kinetic and magnetic
energy. Note that the matrix ra.D r ˝ a/ denotes a dyadic product and not
a vector gradient. The reader is urged to caution, since this notation is not
consistently used throughout the literature. Also, the symbol “�” denotes a dot
product with the implication that r � a is the divergence of a vector a. The
multiplication of a vector b with a matrix is also indicated by the symbol “�”,
i.e., we write b � ra D b � .ra/, meaning that the vector b is multiplied with
the matrix ra. We will also make use of the identity

r . f C/ D f rC C Crf ;

where the matrix Crf denotes again the dyadic product.

Problem 5.1 Complete the derivation of the transport equation for the Elsässer
variables z˙, starting from

@u
@t

C U � .ru/C u � .rU/� ŒB0 � .rb/C b � .rB0/�
4��0

D � 1

�0
rıpT C Nu

(5.1)
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and

@b
@t

C U � .rb/C u � .rB0/ � B0 � .ru/ � b � .rU/

D � .r � U/ b � .r � u/B0 C Nb; (5.2)

using the definitions for the Elsässer variables z˙ and for the Alfvén speed VA,

z˙ D u ˙ bp
4��0

VA D B0p
4��0

; (5.3)

and the following definitions

U
�0

� r�0 D �r � U (5.4a)

U � r 1p
4��0

D 1p
4��0

r � U
2

(5.4b)

B0 � r 1p
4��0

D r � VA: (5.4c)

Solution First we simplify the evolution equations for the turbulent kinetic (A)
and magnetic (B) energy. Then we combine both equations to obtain transport
equations for the forward and backward propagating Elsässer variables.

A. We begin with Eq. (5.1) and consider the last term on the left-hand side. A closer
inspection reveals that

B0p
4��0

� rbp
4��0

D B0p
4��0

�



r
�

bp
4��0

�

� r
�

1p
4��0

�

b
�

D B0p
4��0

� r
�

bp
4��0

�

�



B0 � r
�

1p
4��0

��
bp
4��0

D VA � r
�

bp
4��0

�

� bp
4��0

.r � VA/ ; (5.5)

where we used the chain rule in the first line. In the second line we expanded
the square brackets and used the identity for dyadic products, B0 Œ.rf /b� D
ŒB0 � .rf /� b, in the second term. In the third line we used the relation (5.3)
to substitute B0=

p
4��0 in the first term and the relation (5.4c) to rewrite

the second term. With this simplification the evolution equation for u can be
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rewritten as

@u
@t

C U � .ru/C u � .rU/� VA � r
�

bp
4��0

�

C bp
4��0

.r � VA/� bp
4��0

� rB0p
4��0

D � 1

�0
rıpT C Nu: (5.6)

B. Starting with the transport equation for the turbulent magnetic fields (5.2) we
may rewrite the equation as

@

@t

�
bp
4��0

�

C U � rbp
4��0

C u � rB0p
4��0

� B0p
4��0

� .ru/

� bp
4��0

� .rU/C .r � U/
bp
4��0

C .r � u/
B0p
4��0

D Nb

p
4��0

;

where we pulled the terms � .r � U/b � .r � u/B0 from the right to the left-
hand side and multiplied the entire equation by 1=

p
4��0, using the fact that

�0 is time-independent. A closer inspection of the second term on the left-hand
side shows that

U � rbp
4��0

D U � r
�

bp
4��0

�

�



U � r
�

1p
4��0

��

b

D U � r
�

bp
4��0

�

� bp
4��0

r � U
2
;

where we essentially used the results from Eq. (5.5), i.e., we used the chain rule
and the identity for dyadic products. In the second line we used relation (5.4b)
in the second term. Substituting this result back into the evolution equation for
b and using the definition for the Alfvén speed (5.3) we find

@

@t

�
bp
4��0

�

C U � r
�

bp
4��0

�

� bp
4��0

�

r � U
2

�

C u � rB0p
4��0

� VA � ru � bp
4��0

� rU C .r � U/
bp
4��0

C .r � u/VA D Nb

p
4��0

:

The third and seventh term can be combined, so that

@

@t

�
bp
4��0

�

C U � r
�

bp
4��0

�

C bp
4��0

�

r � U
2

�

C u � rB0p
4��0

� VA � ru � bp
4��0

� rU C .r � u/VA D Nb

p
4��0

: (5.7)
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Elsässer Variables Now we combine the transport equations for u and b in such a
way that zC D (5.6) C (5.7) and z� D (5.6) � (5.7). We obtain

@z˙

@t
C U � �rz˙�� VA � �rz˙�˙ z� � rB0p

4��0
C z� � rU

C bp
4��0

�

r � VA ˙ r � U
2

�

˙ .r � u/VA D NL˙ � 1

�0
rıpT ;

with the nonlinear terms NL˙ D Nu ˙ Nb=
p
4��0 on the right-hand side. A

common assumption adopted in turbulence modeling is to assume that small scale
fluctuations are incompressible, so that the mean density �0 varies slowly and
ı� D 0 (see [5]). From the continuity equation we find that the fluctuating velocity
field becomes solenoidal,

@�

@t
C r � �u D 0 ! r � u D 0:

Thus, by neglecting the term proportional to .r � u/VA and by using

bp
4��0

D ˙z˙ � z�

2
;

we can simplify the equation to

@z˙

@t
C .U � VA/ � rz˙ C z˙ � z�

2
r �



U
2

˙ VA

�

C z� �



rU ˙ rB0p
4��0

�

D NL˙ C S˙;

where we used S˙ D �rıpT=�0. Thus, the transport equation for the small scale
Elsässer variables can be written as

@z˙

@t
C .U � VA/ � rz˙ C 1

2
r �



U
2

˙ VA

�

z˙

C z� �



rU ˙ rB0p
4��0

� 1

2
�r �



U
2

˙ VA

��

D NL˙ C S˙; (5.8)

where � is the unity matrix.
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5.2 The Transport Equation for the Magnetic Energy Density

One can introduce the following moments of the Elsässer variables

ET D
˝
zC � zC ˛C h z� � z� i

2
D ˝

u2
˛C ˝

b2=4��0
˛

(5.9a)

EC D
˝
zC � zC ˛ � h z� � z� i

2
D
D

u � b=
p
4��0

E
(5.9b)

ED D ˝
zC � z� ˛ D ˝

u2
˛ � ˝

b2=4��0
˛
; (5.9c)

where ET is twice the total energy in the fluctuations (the sum of kinetic and
magnetic energy), EC is the cross helicity, the difference in energy between
forward and backward propagating modes, and ED is the energy difference,
i.e., the difference between twice the fluctuation kinetic energy and magnetic
energy density (measured in Alfvén units), sometimes called the residual
energy. By using the kinetic and magnetic energy

Eu D 1

2

˝
u2
˛

and Eb D 1

2

˝
b2=4��0

˛
(5.10)

and by combining Eqs. (5.9a)–(5.9c) we also find the following useful
relations,

rA D Eu

Eb
D ET C ED

ET � ED
D 1C HD

1 � HD

HD D ED

ET
D rA � 1

rA C 1
; (5.11a)

where rA is the Alfvén ratio and HD is the normalized energy difference or
residual energy. The total and residual energy can then be written in the form

ET D 2Eu C 2Eb D 2Eb.rA C 1/ (5.12a)

ED D HDET : (5.12b)

A very general set of transport equations can be derived from Eq. (5.8) in
terms of the above moments together with correlation length equations. The
physical content is sometimes difficult to extract, so we make the following
assumptions that are quite reasonable beyond some 1–2 AU.

(continued)
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A. The Alfvén ratio is assumed to be constant.
B. The cross helicity EC is assumed to be zero, i.e., the energy in inward and

outward propagating modes is equal.
C. Structural similarity hypothesis.

Problem 5.2 Complete the derivation of the transport equation for ET , Eq. (5.14),
and hence derive the final form of the transport equation.

Solution Starting with Eq. (5.8) we can rewrite the second term in the last line
as

z� � rB0p
4��0

D z� � rVA C 1

2�0
VA
�
z� � r�	 ;

so that the evolution equation for the small scale Elsässer variables becomes

@z˙

@t
C .U � VA/ � rz˙ C 1

2
r �



U
2

˙ VA

�

z˙ C z� � rU ˙ z� � rVA

˙ 1

2�0
VA
�
z� � r�	 � 1

2
z� � �r �



U
2

˙ VA

�

D NL˙ C S˙: (5.13)

To derive the evolution equation for the total energy ET we multiply the evolution
equation for zC with zC and the evolution equation for z� with z�, i.e., zC �@zC=@tC
: : : and z� � @z�=@t C : : : . Then both equations are added up. By considering each
term separately we find by using the moments of the Elsässer variables, Eqs. (5.9a)–
(5.9c):

• First term: With definition (5.9a) the first term can easily be calculated as

�

zC � @zC

@t
C z� � @z�

@t

�

D 1

2

@

@t

˝
zC � zC C z� � z� ˛ D @ET

@t
:

• Second term: Here we find

˝ �
U � rzC� � zC C .U � rz�/ � z� ˛ D U � rET ;

where we used

�
U � rz˙� � z˙ D Uizj̇

@zj̇

@xi
D Ui

2

@zj̇
2

@xi
D U
2

� rz˙2
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together with Einstein’s summation convention and the dyadic product. Note that
rz˙2

is the gradient, so that

U
2

� rzC2 C U
2

� rz�2 D U � r
 

zC2 C z�2

2

!

D U � rET ;

where we used definition (5.9a).
• Third term: Here we find

˝� �VA � rzC� � zC C .VA � rz�/ � z� ˛ D �VA � rEC;

where we basically used the results from the second term.
• Fourth term: Here, .r � U/=2 can be pulled out and we find

�
1

4
.r � U/ zC � zC C 1

4
.r � U/ z� � z�

�

D 1

2
r � UET ;

where we used definition (5.9a).
• Fifth term: Here, we pull out .r � VA/ and find

�
1

2
.r � VA/ zC � zC � 1

2
.r � VA/ z� � z�

�

D r � VAEC;

where we used definition (5.9b).

For the remaining terms we will adopt the structural similarity hypothesis, where
we approximate zC

i z�
j D azC �z� for some constant a, i.e., the off diagonal elements

are approximated by the trace of the matrix.

• Sixth term: We find

˝
.z� � rU/ � zC C �

zC � rU
� � z� ˛ 	 2ar � UED C 2aEDSu

x ;

where we used

˝ �
z˙ � rU

� � z� ˛ D
D

zi̇ z�
j

E @Uj

@xi
	 a

˝
z˙ � z� ˛ @Uj

@xi

D aED
@Uj

@xi
D aEDr � U C aEDSu

x ;

and where Su
x D P

i;jIi¤j @Ui=@xj is the sum of the shear velocity gradient terms.
• Seventh term: By using the results from the previous term, we find immediately

˝
.z� � rVA/ � zC � �

zC � rVA
� � z� ˛ D 0:
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• Eighth term: This term vanishes identically,

�
1

2�
VA .z� � r�/ � zC � 1

2�
VA
�
zC � r�� � z�

�

D 0;

since

VA
�
z˙ � r�� � z� D VAiz

�
i zj̇

@�

@xj
	 VAiaED

@�

@xj
:

• Ninth term: By using definition (5.9c) we find

�

�1
4
Œz� � � .r � U/� � zC � 1

4

�
zC � � .r � U/

	 � z�
�

D �1
2

r � UED;

since

z˙ � � .r � U/ � z� D zj̇ z�
j

@Ui

@xi
D .z˙ � z�/.r � U/ D ED.r � U/:

• Tenth term: By using the results from the previous term, we find immediately

�

�1
2
Œz� � � .r � VA/� � zC C 1

2

�
zC � � .r � VA/

	 � z�
�

D 0:

Combining all results we find the transport equation for ET ,

@ET

@t
C U � rET � VA � rEC C 1

2
r � UET C r � VAEC C

�

2a � 1

2

�

r � UED

C 2aEDSu
x D ˝ �

NLC C SC	 � zC ˛C h ŒNL� C S�� � z� i : (5.14)

Under the assumption that the cross helicity is zero and by using the relations (5.11a)
and (5.12a) we find with ED D HDET D HD2Eb.rA C 1/, the following expression

2.rA C 1/
@Eb

@t
C 2.rA C 1/U � rEb C 2.rA C 1/

1

2
r � UEb

C 2.rA C 1/

�

2a � 1

2

�

r � UHDEb C 2.rA C 1/2aHDEbSu
x

D ˝ �
NLC C SC	 � zC ˛C h ŒNL� C S�� � z� i : (5.15)
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On dividing the entire equation by 2.rA C 1/ we obtain

@Eb

@t
C U � rEb C 1

2
r � UEb C

�

2a � 1

2

�

r � UHDEb C 2aHDEbSu
x

D
˝ �

NLC C SC	 � zC ˛

2.rA C 1/
C h ŒNL� C S�� � z� i

2.rA C 1/
: (5.16)

By neglecting the right-hand side and the mixing terms proportional to HD we obtain
the WKB equation (5.17).

Problem 5.3 Solve the steady-state WKB equation for the energy density of
magnetic field fluctuations

@Eb

@t
C U � rEb C 1

2
r � UEb D 0; (5.17)

in a spherically symmetric steady flow for which U D U0Or, U0 D const:, �0 D
�00.R0=r/2, and where �00 is the density at a heliocentric distance R0. Hence, show
that b2=b20 D .R0=r/3.

Solution For a steady flow the energy density of magnetic field fluctuations is
constant in time, thus @Eb=@t D 0. Considering a spherically symmetric flow, we
transform the gradient and divergence into spherical coordinates,

rsEb D @Eb

@r
C 1

r

@Eb

@

C 1

r sin 


@Eb

@�

rs � U D 1

r2
@

@r

�
r2Ur

�C 1

r sin 


@

@

.sin 
U
 /C 1

r sin 


@U�

@�
:

In a spherically symmetric flow all quantities are independent of 
 and �. Also,
since U D U0Or, we find Ur D U0, so that U D .U0; 0; 0/ in spherical coordinates,
and Eq. (5.17) becomes

U0

@Eb

@r
C 1

2

1

r2
@

@r

�
r2U0

�
Eb D 0:

After dividing by U0 ¤ 0 and taking the derivative of the second term, we obtain

@Eb

@r
C Eb

r
D 0 H)

Z
dEb

Eb
D �

Z
dr

r
;

which can readily be solved by ln Eb D � ln r C C0, where C0 is an integration
constant. We obtain the general solution of the WKB equation (5.17)

Eb D C

r
;
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where C D exp C0 is another integration constant that has to be determined by the
initial conditions. In order to calculate the constant C we recall from Eq. (5.10) that

Eb D
�

b2

4��0

�

D
�

b2

4��00 .R0=r/2

�

D C

r
; (5.18)

where we used the density �0 D �00.R0=r/2 (see above). With the initial conditions
b D b0 at the radial distance r D R0, we find for the constant

C D R0

�
b20

4��00

�

:

Substituting this result back into Eq. (5.18) we obtain the solution of the WKB
equation (5.17)

Eb D b2

4��00 .R0=r/2
D R0

r

b20
4��00

! b2

b20
D
�

R0
r

�3
:

5.3 Modelling the Dissipation Terms

Problem 5.4 Complete the derivation of the correlation length equation (5.22).

Solution We start with the covariance equation for LT ,

@LT

@t
C U � rLT C 1

2
r � ULT C 2

�

a � 1

4

�

r � ULD C 2aLDSu
x D 0: (5.19)

Zank et al. [6] argued that the velocity and magnetic field fluctuations posses equal
areas under their respective correlation functions, from which one can infer that
�D D 0. This is a somewhat severe restriction but maintains some tractability in the
turbulence model. Since LD D �DED it follows that LD D 0 so that the transport
equation (5.19) can be simplified to

@LT

@t
C U � rLT C 1

2
r � ULT D 0:

With LT D 2ET�
T and recalling from Eq. (5.12a) that ET D 2Eb.rA C 1/, where rA

is the constant Alfvén ratio, we find LT D 4Eb.rA C 1/�T and, therefore,

4.rA C 1/
@Eb�

T

@t
C 4.rA C 1/U � r.Eb�

T/C 4.rA C 1/
1

2
r � UEb�

T D 0:
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On dividing the equation by 2.rA C 1/ ¤ 0 we find

�T @Eb

@t
C Eb

@�T

@t
C �TU � rEb C EbU � r�T C 1

2
r � UEb�

T D 0: (5.20)

Now we multiply the evolution equation for the magnetic field fluctuations,
Eq. (5.16), by �T and obtain

�T @Eb

@t
C �TU � rEb C 1

2
�Tr � UEb C �T

�

2a � 1

2

�

r � UHDEb

C �T2aSu
xHDEb D �T

�˝
NLC � zC ˛C h NL� � z� i�C �TS;

where we used S D ˝
SC � zC ˛ C h S� � z� i. For the nonlinear dissipation term we

use

˝
NLC � zC ˛C h NL� � z� i D �E3=2b

�
;

see [5], Chap. 6.4 for a detailed description. Hence, we find

�T @Eb

@t
D ��T E3=2b

�
C �TS � �TU � rEb � 1

2
�Tr � UEb

� �T

�

2a � 1

2

�

r � UHDEb � �T2aSu
xHDEb: (5.21)

Substituting this equation back into Eq. (5.20) we find

� �T E3=2b

�
C �TS � �TU � rEb � 1

2
�Tr � UEb � �T

�

2a � 1

2

�

r � UHDEb

� �T2aSu
xHDEb C Eb

@�T

@t
C �TU � rEb C EbU � r�T C 1

2
r � UEb�

T D 0:

The third and the eighth term cancel as well as the fourth and the tenth term. Then
we move the first two terms to the right-hand side and divide the entire equation
by Eb,

@�T

@t
C U � r�T � �T

�

2a � 1

2

�

r � UHD � �T2aSu
xHD D �T E1=2b

�
� �TS

Eb
:
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Identifying now �T with 2� we find the transport equation for the correlation length

@�

@t
C U � r� � �

�

2a � 1

2

�

r � UHD � �2aSu
xHD D E1=2b � �S

Eb
: (5.22)

Problem 5.5 Integrate the steady-state spherically symmetric form of the transport
equations,

U
@Eb

@r
C U

r
Eb � � U

r
Eb D �E3=2b

�
(5.23a)

U
@�

@r
C �

U

r
� D E1=2b

2
(5.23b)

analytically, if Eb.r D R0/ D Eb0 and �.r D R0/ D �0. Hence, show that
asymptotically, in the limit of no mixing � D 0 (which is appropriate for either
2D or slab turbulence), one obtains the estimates

b2=b20 
 .R0=r/3:5 �=�0 
 .r=R0/
1=4:

This model corresponds to Kolmogorov/von Karman turbulence in an expanding
medium. Show that in the opposite limit of strong turbulence (� D 1), the solutions
reduce asymptotically to

b2=b20 
 .R0=r/4; �=�0 
 constant:

This solution describes Taylor turbulence in a non-expansive medium.

Solution We begin by dividing Eq. (5.23a) by Eb and multiplying Eq. (5.23b) by
a factor of 2. This yields

U

Eb

@Eb

@r
C U

r
� �

U

r
D �E1=2b

�
(5.24a)

E1=2b D 2U
@�

@r
C 2�

U

r
�: (5.24b)

Substituting now the term proportional to E1=2b in the first equation by the second,
we obtain after some simplification the single differential equation

1

Eb

@Eb

@r
C .1C � /

1

r
D � 2

�

@�

@r
; (5.25)
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where we divided by U. Multiplying now by @r and integrating yields

Z Eb

Eb0

@E0
b

E0
b

C .1C � /

Z r

R0

dr0

r0 D �2
Z �

�0

d�0

�0 ;

where we used the initial conditions Eb0, R0, and �0. This equation can readily be
solved and we obtain

ln

�
Eb

Eb0

�

C .1C � / ln

�
r

R0

�

D �2 ln

�
�

�0

�

;

leading to the solution

Eb

Eb0
D
�

R0
r

�.1C� / �
�0

�

�2
: (5.26)

This equation can be solved for

E1=2b D
�

R0
r

� 1C�
2 �0

�
E1=2b0 : (5.27)

This result is substituted back into Eq. (5.24b),

�
R0
r

� 1C�
2 �0

�
E1=2b0 D 2U

@�

@r
C 2�

U

r
�:

Now, we multiply this equation by � and divide by U, leading to

�
R0
r

� 1C�
2 �0

U
E1=2b0 D 2�

@�

@r
C 2

�

r
�2:

Note that 2�@�=@r D @�2=@r, and by using the substitution x D �2 we can rewrite
the equation as

�
R0
r

� 1C�
2 �0

U
E1=2b0 D @x

@r
C 2

�

r
x:

Multiplying both sides with r2� (integrating factor) yields

r2�
�

R0
r

� 1C�
2 �0

U
E1=2b0 D @x

@r
r2� C 2r2��1� x � @

@r

�
xr2�

�
:
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Integrating both sides with respect to r and using the above initial conditions yields

R
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2
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U
E1=2b0
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r0 3��1
2 dr0 D
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1C�
2

0

�0

U
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3� C 1




r
3�C1
2 � R

3�C1
2

0

�

D �2r2� � �20R
2�
0 ;

where we substituted x D �2 in the second line and used �0 for the lower limit on
the right-hand side, since �.r D R0/ D �0. Rewriting this equation leads to

�2r2� D �20R
2�
0 C R

1C�
2

0

�0

U
E1=2b0

2

3� C 1




r
3�C1
2 � R

3�C1
2

0

�

: (5.28)

By using the definition

C D U

E1=2b

�0

R0
;

Eq. (5.28) can be solved after some straightforward algebra to
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(5.29)
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1C 1

C

2

3� C 1
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� 3�C1
2

� 1
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; (5.30)

where we used the first expression (5.29) to substitute �=�0 in Eq. (5.26) to derive
the expression for Eb=Eb0. These two equations are the general solutions to the set
of differential equations, (5.23a) and (5.23b), see also Zank et al. [6], JGR 101, A8.

Limits In the asymptotic limit (r � R0) we obtain

�

�0


�

r

R0

�1=4
for � D 0; (5.31)

and

�

�0

 constant for � D 1: (5.32)
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Recall from Problem 5.3 that

b2

b20
D Eb�0

Eb0�00
D Eb

Eb0

�
R0
r

�2
D
�
�0

�

�2 �R0
r

�.3C� /
;

where we substituted Eb=Eb0 by Eq. (5.26) in the last step and where we used the
relation �0 D �00.R0=r/2. Substituting �=�0 by relation (5.31) and (5.32) we find

b2

b20
D
�

R0
r

�3:5
for � D 0;

and

b2

b20
D
�

R0
r

�4
for � D 1:

Problem 5.6 Determine the general solution to the stream-driven steady-state
spherically symmetric form of the transport equations,

U
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r
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r
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U
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2
� Csh
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2r
� (5.34)

analytically, if Eb.r D R0/ D Eb0 and �.r D R0/ D �0. Hence, find asymptotic
solutions for weak and strong mixing.

Solution Similar to the preceding problem we begin with dividing Eq. (5.33) by
Eb and multiplying Eq. (5.34) by 2. This yields
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Eb

@Eb
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r
�: (5.35b)

Substituting the term proportional to E1=2b in the first equation by the second, we
obtain after some simplification
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Note that this result is identical to Eq. (5.25). The solution is given by Eq. (5.27),

E1=2b D
�

R0
r

� 1C�
2 �0

�
E1=2b0 :

This result is substituted back into Eq. (5.35b),
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Now, we multiply this equation by � and divide by U, leading to

�
R0
r

� 1C�
2 �0

U
E1=2b0 D 2�

@�

@r
C .2� C Csh/

r
�2: (5.37)

Note that 2�@�=@r D @�2=@r, and by using the transformation x D �2 we can
rewrite this equation as

�
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� 1C�
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C .2� C Csh/

r
x:

Multiplying both sides with r2�CCsh (integrating factor) yields
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:

Integrating both sides with respect to r and using the above initial conditions yields
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which can be solved by
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where we substituted x D �2 and used �0 for the lower limit on the right-hand side.
Rewriting this equation gives

�2r2�CCsh
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2�CCsh
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;

This equation can be solved after some lengthy but straightforward algebra to
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where we used the constant C from the preceding problem. In the asymptotic limit
(r � R0) we obtain the same results as for the preceding problem. Compare also
with Zank et al. [6], JGR 101, A8.
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Alfvén ratio, 239

BGK collision operator, 173
Binomial coefficient, 29, 46, 54, 146
Binomial theorem, 54, 60
Boltzmann equation

BGK form, 133
collisionless, 137
force-free, 102
mixed phase space, 78, 195
non-relativistic, 77, 195

Braginskii’s short-mean-free-path orderings,
178

Burgers’ equation, 118, 119, 123, 221
steady state, 126

Cardgame, 3, 7, 46
Central limit theorem, 69
Chandrasekhar function, 156
Chapman-Enskog expansion, 101, 161
Characteristic curve. See also Method of

characteristics
Characteristic polynom, 99
Chebyshev’s inequality, 28, 56
Coherence, 72
Cole-Hopf transformation, 123
Collisionless plasma, 137
Collision operator, 137, 138

Landau form, 149
Combinations, 29
Conditional distribution, 38
Conditional mean, 62
Conditional probability, 38

Conductive heat flux, 173
Conservation

angular momentum, 85
energy, 92
mass, 92
momentum, 92
total energy, 86

Contact discontinuity, 115
Continuity equation, 140
Convective derivative, 100, 161, 164, 185, 213,

222
Correlation coefficient, 48, 61
Cospectrum, 71
Coulomb field, 87
Coulomb logarithm, 154
Coulomb scattering. See Rutherford scattering
Cross section, 91
Cross-spectral density, 71

Debye length, 137
Diffusive shock acceleration, 228, 230
Dispersion relation

Alfvén waves, 182
linear wave modes in a cosmic ray mediated

plasma, 214
long wavelength limit, 217, 225
magnetosonic waves, 184
short wavelength limit, 219

Distribution function, 14
binomial distribution, 54
Gaussian or normal, 62
gyrotropic, 196, 198
Maxwell-Boltzmann, 92, 94, 102, 157,
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Poisson distribution, 57
spherical coordinates, 196

Eccentricity, 88
Eigenvalue, 99
Electromagnetic force, 195
Electron scattering, 87
Elsässer variables

cross helicity, 239
moments, 239
small scale, 235
transport equation, 238

Energy difference. See Residual energy
Energy flux, 144
Error function, 156
Euler equations, 97, 97
Euler’s formula, 72
Expected value, 24

Focussed transport equation, 195
Fokker-Planck equation, 149
Fokker-Planck operator, 138
Fourier transformation, 124

Gas
sound speed, 99

Geometric series, 4, 5, 9
Gyrofrequency, 197

Hamiltonian, 86
Heat equation, 124

fundamental solution, 126
general solution, 126

Heat flux vector, 113
Heat kernel, 126
Heaviside step function, 206

Impact parameter, 85
Induction equation, 185
Interplanetary magnetic field, 204

Jacobian matrix, 211
Joint covariance, 70

Kaufmann representation, 177
K-operator, 177

Kurtosis, 35
Poisson distribution, 59

Lagrangian, 85
Landau collision operator, 149

Maxwell Boltzmann distribution, 153
Legendre polynomials, 133

generating function, 130, 131
orthogonality, 130
recursion relation, 131

Legendre’s differential equation, 129
Levi-Civita tensor, 163, 197
Lorentz force, 137
Lorentz scattering operator, 154

MacLaurin’s series, 31
Mathematical expectation. See Expected value
Median, 25
Method of characteristics, 80
MHD equations

ideal, 179
linearized, 214
one dimensional, 213

Mixed sound speed, 218
Mode, 25
Moment-generating function, 24, 32, 44

binomial distribution, 54
Gaussian or normal distribution, 63
Poisson distribution, 58

Motional electric field, 195

Pascal’s triangle, 146
Pdf. See Probability density function
Peculiar velocity. See Random velocity
Permittivity of free space, 88
Pitch angle, 196
Pressure tensor, 173
Probability density function, 9
Probability set function, 1

Quadrature spectrum, 71

Random variable, 7
Random velocity, 79

spherical coordinates, 196
Rankine-Hugoniot conditions, 114
Rate of momentum transfer, 139
Rate-of-strain tensor, 172
Rate of thermal energy transfer, 139, 144
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Residual energy, 239
Rodrigues’ formula, 130
Rutherford cross section, 91
Rutherford scattering, 88

Sample space, 1
Shock adiabatic, 188
Shock compression ratio, 228
Shock cubic, 190
Shock polar relation. See also Shock cubic
Shock wave, 115

downstream, 115
upstream, 115

Skewness, 32
Poisson distribution, 59

Solar wind
constant radial flow, 204

Spherical coordinates
divergence, 243
gradient, 243

Stochastic independence, 50
Structural similarity hypothesis, 241
Survival analysis, 49

Theorem of finite series, 30
Thermal velocity. See Random velocity
Transport equation

correlation length, 246
Elsässer variables, 238
gyrophase average, 198
total turbulence energy , 242
WKB, 243

Turbulence
Kolmogorov, 246
Taylor, 246
von Karman, 246

Vlasov equation
relativistic, 209
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