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Preface

This book was written during my stay at the Center for Space Plasma and
Aeronomic Research (CSPAR) at the University of Alabama in Huntsville, between
the years 2010 and 2014. During that time, Prof. Dr. Gary Zank was giving the
lecture on Transport Processes in Astrophysics, which included many problems
from the fields of statistics, transport theory (particle transport and turbulence
transport), diffusion theory, and many more. I had the great pleasure to teach some
of the classes and to help him grade the classwork. Since many of the problems were
quite complex and intricate at times, I found it conducive to collect and solve those
problems in a comprehensive way and to organize them in this book.

Therefore, this book is what it is: a solution manual providing detailed and
extensive descriptions of the solutions to nearly all problems given in the lecture
notes Transport Processes in Space Physics and Astrophysics (Lecture Notes in
Physics) by Gary P. Zank, see [5], and on multiple occasions in this book we refer
to the lecture notes for further reading.

At the beginning of each section, we give a brief introduction and repetition of
all information necessary to understand the problems and solutions. However, it has
to be clear that this book cannot substitute the lecture notes and, therefore, should
be understood as a supplement to it. The reader is also referred to any textbooks in
physics and math related to this topic.

Note that some problems and equations have been altered from the lecture
notes to be more consistent with the terminology in this book or to clarify the
concept of the problem itself. For example, Problem 3.3 has been extended by
some subquestions to provide a better idea of the steps necessary to solve the
problem. Some equations have been corrected, for example Eq. (2.112), compare
with Eq. (3.33) in the lecture notes, and for the sake of brevity (and to avoid too
many repetitions) some problems have been omitted altogether. For example, the
problems in Sect.5.2 from the lecture notes (Transport Equation for Relativistic
Charged Particles) have not been included in this book, since they are similar to the
preceding Sect. 5.1. (5.1.1 The Focussed Transport equation).

I want to thank Prof. Dr. Gary Zank for this wonderful opportunity to write this
book and the freedom I had in writing it. The many conversations and discussions

v



vi Preface

I had with him about this solution book and his lecture notes gave me a deep
insight into the field of Transport Processes in Astrophysics and certainly a better
understanding for many of the problems in this book. I want to thank him especially
for reading the manuscript and his numerous explanations, which made the solutions
much more readable and understandable. However, despite careful readings of the
manuscript, I cannot rule out any errors, typos, or mislabeling. Needless to say that
all remaining errors are my own.

I also want to thank my colleagues at CSPAR, for their valuable discussions and
comments regarding some specific problems.

Lastly, I want to thank all the students who so tenaciously and thoroughly worked
through all the problems. Their comments and discussions helped tremendously to
improve the readability of this solution book. With their valuable comments and
discussions, I was able to go into more detail where it was necessary and leave
things out that were only of minor importance.

I hope that this book might be helpful not only to students but also to researchers
and anyone who is interested in the exciting field of astrophysics.

Kaiserslautern, Germany Alexander Dosch
July 2015
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Chapter 1
Statistical Background

1.1 Probability Set Function

Suppose we perform n independent experiments under identical conditions.
If an outcome A results n4 times, then the probability that A occurs is
n
P(A) = lim —. (1.1)
n—>o00 n
Let C be the set of all possible outcomes of a random experiment, then C
is called the sample space. An outcome is a point or element in the sample
space. The sample space can be finite or infinite.

Definition 1.1 If P(C) is defined for a subset C of the sample space C, and
C1, Cy, (s, ... are disjoint subsets of the sample space C, then P(C) is called
the probability set function of the outcome of the random experiment if

e P(C)>0
* P(CLUGUCs...)=P(Cy)+ P(Cy) + P(C3) + ...
* P(C)=1.

Theorem 1.1 For each C C C, P(C) = 1 — P(C*), where C* denotes the
complement of C.

Theorem 1.2 P(?) = 0.
Theorem 1.3 [f C, and C, are subsets of C such that C; C Cy, then P(Cy) <
P(Cy).

(continued)
© Springer International Publishing Switzerland 2016 1
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2 1 Statistical Background

Theorem 1.4 ForeachC C C,0 < P(C) < 1.
Theorem 1.5 [fC, C C and C, C C, then

P(C1 U Gy) = P(Cy) + P(C) —P(C1 N Cy). (1.2)

Problem 1.1 A positive integer from 1 to 6 is randomly chosen by casting a die.
Thus the sample space isC = {c: ¢ =1,2,3,4,5,6}.LetC; = {c:c=1,2,3,4}
and C; = {c¢ : ¢ = 3,4,5,6} be subsets of the sample space C. If the probability
set function P assigns a probability of 1/6 to each ¢ € C, compute P(C}), P(C,),
P(Cl n Cz), and P(C1 U Cz)'

Solution The probability of each outcome ¢ € C is given by P(c) = 1/6. The
probability to chose a number from the subsets C; and C; is then given by

P(C)) =P(1)+P2)+P3)+PHA) =

P(Cy) = P(3) + P(4) + P(5) + P(6) =

AN~ N
WIN W[

The probability for the intersection and union of the subsets is given by
2 1

+ =1

P(CiU(C) =P(Cy) +P(Cy)) —P(C1NGy) = %

SSI
SSIN

Problem 1.2 Draw a number without replacement from the set {1, 2, 3,4, 5}, i.e.,
choose a number, and then a second from the remaining numbers. The sample space
is then given by
C={c:c= (L2)(1,3)(1,4)(1,5)(2,1)(2,3)(2,4)(2.5(3.1)(3.2)
(3.4)(3.5)(4.1)(4.2)(4.3)(4.5)(5. )(5.2)(5.3)(5. 4)}.
Assume, that all 20 possible results have the same probability P(c) = 1/20. Find

the probability that an odd digit will be selected (A) the first time (B) the second
time and (C) both times.

Solution

A. The probability of finding an odd digit the first time is given by

12
P(odd first) = 20 =3
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B. The probability of finding an odd digit the second time is given by

P(odd second) = P(odd & odd) + P(even & odd)
32 n 23 3
5454 5
C. The probability of finding an odd digit both times (first and second) is given by

3

3

L \S)

Problem 1.3 Draw one card from an ordinary deck of 52 cards and suppose that
the probability set function assigns a probability of 1/52 to each of the possible
outcomes c. Let C; denote the collection of 13 hearts and C, the collection of 4
kings. Compute P(C)), P(C3), P(C; N C3), and P(C; U C3)!

Solution The collection of 13 hearts is described by the subset
Ci={c:c=Q02,03,04,...,0QAce}.

Since there are only 13 cards of hearts in the deck, the probability of drawing one
card of hearts is given by

13 1

Similarly, the collection of 4 kings is described by the subset
C; = {c: ¢ = ¥King, OKing, ®#King, &King}
and the probability that one card drawn from the deck is a king is given by

4 1

Since there is only one king of hearts in the deck we find for the intersection

1
P(CiNG) =—.
(Ci1NG) 5
The union of both subsets (i.e., collecting 13 cards of hearts and the remaining 3
kings) is then given by

13 4 1 4
P(CLUC) =P P(C)—P(CINC) = — + — — — = —
(C1U(Gy) (C1) + P(C) —P(C1 N Cy) ) + % 5213
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Problem 1.4 A coin is tossed as many times as necessary to give one head. The
sample space is therefore C = {c:c=H,TH,TTH,...}. The probability set
function assigns probabilities 1/2, 1/4, 1/8, ..., respectively. Show that P(C) =
1. Suppose the subsets C; = {c¢:c=H,TH,TTH,TTTH,TTTTH} and C, =
{¢:c=TITTTH,TTTTTH}. Compute P(C), P(C,), P(C; N C3), and P(C; U C3)!

Solution The probability of the sample space can be calculated by using the
convergence of the geometric series Y oo, q* = 1/(1 —¢q) forqg < 1.Forqg = 1/2
we find

Il
|
+
|
+
|
+
|
+

P(C)

[l
I 3
~—
N —
N——
=
[l
=
[Aagk:
~—
N —
N—
=
|
_
| —
L
~—
[\]
[l

The probabilities of the subsets are

P(Cy) LR S S SRS B
D= it s T 6 T2 " n
11 3

The probability of the intersection P(C; N C,) is the probability of the outcome
¢ = TTTTH, so that

1
P(CiNGy) = D)

P(C U C 31 3 1 63

U =3 G 2"

Problem 1.5 A coin is tossed until for the first time the same result appears twice in
succession. Let the probability for each outcome requiring n > 2 tosses be 1/2"7!.
Describe the sample space, and find the probability of the events (A) the tosses end
before the sixth toss, (B) an even number of tosses is required.

Solution The sample space is given by

- { o { (TT), (THH), (THTT), (THTHH), (THTHTT),
B “ =\ (HH), (HTT), (HTHH), (HTHTT), (HTHTHH), . ..

with the probability P(n) = 1/2""! for n > 2. As an example, for n = 2 the
possible outcomes are HH, HT, TH, TT with a probability of 1/4 for each outcome.
The event that the result appears twice in succession (that is either 77 or HH) has the
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probability P(TT or HH) = P(TT)+P(HH) = 1/2. Similarly, for n = 3 there are 8
possible outcomes (HHH, HHT , HTH, HTT, . . . ) with a probability of 1/8 for each
outcome. Obviously, the outcomes 77T and HHH can never occur, since the event
of two identical results in succession already would have been fulfilled after two
tosses. However, since we are interested in the probability of an outcome it is more
important that an outcome can occur rather than it will. Therefore, the probability
forn = 3is P(THH or HTT) = P(THH) + P(HTT) = 1/4.

A. The event that the tosses end before the sixth toss (n < 5) can be described by
the subset

s _{ o { (TT), (THH), (THTT), (THTHH), (THTHTT)
"I\ C T\ (®HH), (HTT), (HTHH), (HTHTT), (HTHTHH) |

The probability for this event is then given by

5
1 1 1 1 1 15
P(A)) = . 2 2t
(A1) Zzn—l 2 TR Tt E T

n=2
B. For an even number of tosses (n = 2,4,6,8,...) we introduce for simplicity

n=2iwithi=1,2,3,4,...,so that the probability is given by

oo

1 ] > (1) 2 2
i=1 i=1 7

i=1
where we used the convergence of the geometric series (see also the previous

problem).

Problem 1.6 Find P(C; N () if the sample space is C = C; U Cy, P(Cy) = 0.8
and P(C,) = 0.5!

Solution Since the sample space is given by C = C; U C, we find immediately
P(C) = P(C; U C;) = 1. From P(C; U C;) = P(Cy) + P(Cy) — P(Cy N Cy) it
follows that

P(CiNCy) =P(Cy) +P(C) —P(CLUC,) =08+05—-1=0.3.
Problem 1.7 Suppose C C C = {c:0 < ¢ < oo} with C = {c: 4 < ¢ < oo} and

P(C) = fc e *dx. Determine P(C), P(C*), and P(C U C*), where C* denotes the
complement of C.

Solution The probability of subset C is given by

o0
P(C) = / efdx = —eM|7 = et
4
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and the probability of the complementary set C* = {c : 0 < ¢ < 4} is calculated by
P(C*)=P(C)—P(C) =1—e*.

Since the subsets C and C* are disjoint and the sample space is defined by C =
C + C*, we find easily

P(C) = P(CUC*) = P(C) + P(C*) = /00 e dx = —e"° = 1.
0

Problem 1.8 If C C C is a subset for which fc e Max exists, where the sample
space is given by C = {c : —o0 < x < 00}, then show that this set function is not a
probability set function. What constant should the integral be multiplied by to make
it a probability set function?

Solution The probability of the sample space is per definition P(C) = 1, thus,

, 0o 0 00
1=PC) = / e Max = / e'dx + / e *dx.
—00 —00 0

Substituting now y = —x in the first integral and using the results from the previous
Problem 1.7 we find

o0 o0 o0
P(C) = / e Vdy + / e “dx = 2/ e Ydx=2#1.
0 0 0

Hence the set function is not a probability set function. The set function has to be
multiplied by 1/2 to make it a probability set function.

Problem 1.9 If C; and C; are two arbitrary subsets of the sample space C, show
that

P(Ci N Cy) < P(Cr) < P(CLUG) < P(C) + P(Cy).

Solution

A. First, we show that P(C; U C;) < P(C1) + P(C,). From Theorem 1.5 we find
P(C1 U Gy) = P(Cy) + P(Cy) — P(C1 N Cy).

Since P(C) > 0, i.e., any probability has to be larger or equal to zero, it follows
immediately that

P(C1 U G) < P(Ch) + P(Cy),

where we used P(C; N Cy) > 0.
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B. In the next step we show that P(C;) < P(C, U C,). Here we use the fact that the
union of both subsets can be described by C; U C, = C; U (C ’1" n Cz), where
Cj and (CT N C,) are disjoint. Hence we have

P(C1 U Cy) = P(Cy) + P(CT N Gy)
and it follows that
P(C1 U Gy) = P(Cy),
since P(C} N C3) > 0.
C. In the last step we show P(C; N C;) < P(Cy). Here we use the relation C; =

(C1 N Cy) U (€ N C3), where (C; N C,) and (Cy N C3) are disjoint subsets.
We find

P(C)) =P(CiNGC)+P(CiNC3)
and it follows immediately that
P(C1) = P(C1 N Cy),

since P (C; N C5) > 0.

1.2 Random or Stochastic Variables

Definition 1.2 Consider a random experiment with sample space C. A
function X, that assigns to each outcome ¢ € C one and only one real number
x = X(c), is a random variable, and the space of X is the set of real numbers
A={x:x=X(c),c eC}.

Random variables can be discrete or continuous. Discrete random variables
are those that take on a finite or denumerably infinite number of distinct
values. Continuous random variables are those that take on a continuum of
values within a given range.

Problem 1.10 Select a card from an ordinary deck of 52 playing cards with
outcome c. Let X(c¢) = 4 if ¢ is an ace, X(c¢) = 3 for a king, X(¢) = 2 for a
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queen, X(¢) = 1 for a jack, and X(c) = 0O otherwise. Suppose P(C) assigns a
probability 1/52 to each outcome c. Describe the probability P(A) on the space
A={x:x=0,1,2,3,4} of the random variable X.

Solution Since there are only 4 aces, 4 kings, 4 queens and 4 jacks in the game,
we find

P@:M:P@:&:P@:b:P@:U:é%:%

and for the remaining cards

36 9
PO)=—=—.
O=%=13

Problem 1.11 Suppose the probability set function P(A) of the random variable X
is P(A) = [, f(x)dx, where f(x) = 2x/9,x € A = {x:0<x<3}. ForA; =
{x:0<x<1}and A, = {x:2 < x < 3}, compute P(A;), P(A;), and P(A| U A»).

Solution The probabilities for the subsets A| and A, are given by

1

1oy X2 1
PA) = —dx= —| =<
s 9 9], 9
39 23 4
P@ﬁ:/-iﬂ:i-zl——zf
.9 91, 99

Since A and A, are disjoint we find

1 5
P(A; UAy) =P(A) + P(Ay) = § + § = —,

Problem 1.12 Suppose that the sample space of a random variable X is given
by A = {x:0<x<1}. If the subsets A = {x:0<x<1/2} and A; =
{x:1/2 <x < 1}, find P(Ay), if P(A)) = 1/4.

Solution Since the sample space is identical to the union of both subsets, i.e.,
Aj UA; = A, we find with P(A) = 1,

1 3
P(A) =1—PA)=1—~="2,
(A2) (Ap) 1= 1
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1.3 The Probability Density Function

Whenever a probability set function P(A), with A C A and sample space A,
can be expressed as

P(A) =P(X €A) =) f(») (1.3)
A

P(A) = P(X € A) = / f(x) dx, (1.4)
A

then X is a random variable of discrete or continuous type, and X has a discrete
or continuous distribution.

The probability P(A) is determined completely by the probability density
Sfunction (pdf), f(x), whether or not X is a discrete or continuous random
variable.

Problem 1.13 Find the constant a that ensures that f(x) is a pdf of the random
variable X for

A.
Fo) = a(%)x forx=1,2,3,...
0 elsewhere
B.
) = f(x) =axe™ for0<x< oo
’ elsewhere.
Solution

A. The sample space is given by A = {x:x=1,2,3,4,...}. By using the
convergence of the geometric series Y o,q* = 1/(1 — q) for ¢ < 1 the
probability set function is

1= P(A) = ia(%)xza{i (%)X—l:| = 2a.

x=1 x=0

Therefore, the constant is a = 1/2.
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B. The sample space is given by A = {x:0 <x < oo}. The probability set
function is

! &0 pd. *°
1=PA = / axe ‘dx'= a[—xe']g° + a/ e = —ae | =a,
0 0
where we used integration by parts. The constant is a = 1.

Problem 1.14 Consider a function of the random variable X such that

ax 0<x<10
fx) =4a20-x) 10 <x<?20 (1.5)
0 elsewhere.

Find a so that f(x) is a probability density function and sketch the graph of the pdf.
Compute P(X > 10) and P(15 < X < 20).

Solution The sample space is givenby C = {x : 0 < x < 20}.
.o 20
1= / dx ax+/ dx a(20 — x) = 100a.
0 10

The parameter has to be a = 1/100 to obtain a pdf. The graph of the pdf is shown
in Fig. 1.1.

0.2

0.18 b

0.16 - 1

B 01 1
0.08 |
0.06 | |
0.04 - 1

0.02 i

Fig. 1.1 Shown is the pdf from Eq. (1.5) for the parameter a = 100
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The probabilities are then calculated by

1 20
PX>10) = — dx (20—x) = 0.5
(2 10) = 15 [ “ar@o-x
and

20
P(15<X<20)=— [ dx(20—x) = 0.125.

100 Jy5
Problem 1.15 Letf(x) = x/15,x = 1,2, 3,4, 5, 0 elsewhere, be the pdf of X. Find
PX=1lorX=2),P(1/2<X <5/2),and P(1 <X <2).
Solution First we note that this probability density function is discrete and we
find
2 2
X 1 2 1
PX=1lorX=2)= = —=— 4+ — ==
( ) ;f(x) 5 15 15 5

x=

2

1 5 X 1
P(-<X<-)= — ==
2 2 —15 5
X 1

Pl1<X<2)= — =-.
15 5

x=1

Problem 1.16 Compute the probability set functions P(|X| < 1) and P(X?> < 9)
for the following pdfs of X: (A) f(x) = x*/18, =3 < x < 3, 0 elsewhere, and (B)
fx) = (x+2)/18, =2 < x < 4, 0 elsewhere.

Solution

A. The probability set functions for the first pdf are given by

12 3 1
P(X|<1)=P-1<X<1)= dx = — P
(X <1) = )/_118x 54|, 27
and
3.2 B3P
P(X2<9)=P(—3<X<3)=/ “dx==| =1.
518 54|,

B. The probability set functions for the second pdf are given by

1 22 1
2 >+ 2x
P(|X|<1):P(—1<X<1):/ x;; dr = 2

-1
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and

3 »2 3

> 240

P(X2<9)=P(—3<X<3)=/ T =2
L, 18 18

25
36"
2

Problem 1.17 Given P(X > a) = ¢ **(Aa + 1), with A > 0,a > 0, find the pdf of
Xand P(X > A1),

Solution Let f(x) be a pdf so that
o0
P(X >a) = / f(x) dx = e (Aa + 1).

Now, we take the derivative of the integral (on the left side) with respect to a and
obtain an expression for the pdf at point a. According to the Fundamental Theorem
of calculus we find

d o0
[ @ = —ria
a a
The derivative of the term on the right side is
d —Aa 2 —Aa
%[(ka-i—l)e ] = —Aae .
Since left and right hand side have to be equal we find (after substituting a — x)
fx) = A2xe ™

and, thus,

PX>A"H = /oof(x) dx = 2‘
A1

e

Problem 1.18 Let f(x) = x72, with 1 < x < o0, 0 elsewhere, be the pdf of X. If
Aj={x:1<x<2}andA; = {x:4 <x <5}, find P(A; UA;) and P(A; N Ap).

Solution Since A and A, are disjoint subsets we find

29 |
P(AIUAz)zP(A1)+P(A2)=/ —zdx—i-/ —dx
1 X 4 X
T 2+ 1771
o x|, X 4_20

P(A; N A,) = 0.

and
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Problem 1.19 Letf(x,y) = 4xy,0 <x <l and 0 < y < 1, 0 elsewhere, be the pdf
of Xand Y. Find PO <X < 3,2 <Y <1),PX=Y),P(X <Y),and P(X < Y).

Solution The probability is given by

11 12 ! 1/2 1 15
PO<X<-,-<Y<l)= d dydxy = X277V, = —
( 24 ) /0 x/1/4 yaxy |0 y|1/4 64
and
1 py 1 1
PX<Y) =/ / 4xydxdy=/ 2y} dy = —.
o Jo 0 2
Similarly we find
PX<Y)= !
— - 2‘
Since P(X = k) = 0, where k is a constant, we find
PX=Y)=0.
Problem 1.20 Given that the random variable X has the pdf
5
2 —0.la<x<0.1la
fx)y=1¢
0 elsewhere
and P(|X| < 2) = 2P(|X| > 2), find the value of a.
Solution As a first condition we find
2 2
5 52 20
P(X]| <2):P(—2<X<2):/ f(x)dx:/ 2 dx = -x) ad
) o a a 1-2 a

Obviously, we find the restriction a > 20, since any probability has to be P < 1.
The second condition is derived by

P(|X|>2)=P(—%<X<—2)+P(2<X<i)

10
-2 a/10 -2 5 a/10 g
:/ f(x) dx + f) dx:/ —dx+/ —dx
—a/10 2 —aj10 4 2 a
5 [ -2 a/10:| 20
= - (x +x =1—-—.
a | l-a/10 2 a
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Since P(|X| < 2) = 2P(|X| > 2) we find that

20 40
b, B

a a

and, by solving this equation for a, that a = 30.

1.4 The Distribution Function

Definition 1.3 Suppose a random variable X has the probability set function
P(A), and is a 1D set. For a real number x, let A = {y : —00,y < x}, so that
P(A) = P(X € A) = P(X < x). The probability is thus a function of x, say
F(x) = P(X < x). The function F(x) is called the distribution function of the
random variable X. Hence, if f(x) is the pdf of X, we have

F) =) _f(y) and F@= [ f@)dy (1.6)

y=<x y=x

for a discrete and a continuous random variable X.

Problem 1.21 Let f(x) be the pdf of a random variable X. Find the distribution
function F(x) of X and sketch the graph for

A.
1 forx=0
flx) =
0 elsewhere
B.
1
= forx=-1,0,1
f) =473
0 elsewhere
C.

£ {E forx=1,2,3,4,5
P X) =

0 elsewhere
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D.
3(1—x)* for0<x<1
flx) =
0 elsewhere
E.
X% forl<x<oo
flx) =
0 elsewhere
F.
1
s forO<x<land2<x<4
flx) =32
0 elsewhere.

Solution

A. The distribution function is given by

P = {o forx < 0 a7

1 for0<x

and the graph is shown in Fig. 1.2.

157
1F °
Z 05 —
0 o
0.5 I ! _| ! L L _| L L L | L L L | s s s |

X

Fig. 1.2 Shown is the probability distribution function Eq. (1.7)
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1.5
1 [
e—O
X 05
I
e—O
0 O
05 ! ! ! ! !
4 2 0 2 4

Fig. 1.3 Shown is the probability distribution function Eq. (1.8)

B. The distribution function is given by

0 forx<—I
1
z for —1< 0
Fy=13 7=t (1.8)
5 for0<x<1
1 forl<x
and the graph is shown in Fig. 1.3.
C. The distribution function is given by
0 forx<1
& forl<x<2
3
= for2< 3
Fy={15 Ore=+s (1.9)
L for3<x<4
2 for4d<x<5
1 for5<ux

and the graph is shown in Fig. 1.4.
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1.5
1 [
i o—o
= L
IOS
3 *—©
I *e—o
i —o
0 ©
L) M P S I R R R |
-4 -2 0 2 4 6 8 10
X

Fig. 1.4 Shown is the probability distribution function Eq. (1.9)

1.4

12

1+

0.8 -

L 06

0.4 -

0.2 -

Fig. 1.5 Shown is the probability distribution function Eq. (1.10)

D. The distribution function is given by

ffOOOdy=0 forx <0
Fx)=1 [;3(1—=y?*dy=—(1-x>+1 for0<x<1 (110
1 forl <x

and the graph is shown in Fig. 1.5.
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14F

12F

08

X

Fig. 1.6 Shown is the probability distribution function Eq. (1.11)

E. The distribution function is given by

T 0dy=0 forx < 1
F(x) = f;"i Y orx

Ly

and the graph is shown in Fig. 1.6.
F. The distribution function is given by

0 forx <0

Jo ydy=13 for0<x<1
Fx)= 11 forl <x<?2
T+ ftay=3%-1 for2<x<4
1

for4 <x

and the graph is shown in Fig. 1.7.

Problem 1.22 Given the distribution function

0, forx < —1
F(x) = ’%2, for —1<x<1
1 for1 < x.

Y ) S S R R B .
- 20

bdy=1-1 forl <x<oo

(1.11)

(1.12)

(1.13)

Sketch F(x) and compute P (—1/2 <X < 1/2), P(X = 0), P(X = 1),and P(2 <

X < 3)!
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14 F

12 F

08 |

02 F

oo Lt )
-4 -2 0 2 4 6 8 10

X

Fig. 1.7 Shown is the probability distribution function Eq. (1.12)

14 F

12 F

08 |

02

-4 -2 0 2 4

Fig. 1.8 Shown is the probability distribution function given by Eq. (1.13)

Solution The distribution function is shown in Fig. 1.8. For the first two
probabilities we find

1 1 1 1y 5 3 2 1
Pl-——<X<-)=F(z)-Fl-z)=2-2=Z==2
( 2 2) (2) ( 2) 8 8 8 4

P(X =0) =0,
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since F(x) is continuous at x = 0. At position x = 1 the function jumps from 3/4
to 1 and is therefore not continuous. In this case we use

301
PX=1)=F)=F(-)=1-7=_

Between position x = 2 and x = 4 the function is continuous again and we find
P2<X<3)=F3)-F2)=1-1=0.

Problem 1.23 Suppose the random variable X has a distribution function F(x) =
1 — ¢ %% with x > 0. Find (A) the pdf of X, (B) the probability P(X > 100),
and (C) let Y = 2X + 5 and find the corresponding distribution function G(y).

Solution The sample space of the random variable X is 4 = {x : x > 0}.

A. The probability density function is given by the derivative with respect to x and
we obtain

fx) = =

dF (x) 0.le %% x>0
0 elsewhere.

B. Finding P(X > 100) can be shown in two ways: First one can set
P(X >100) =1—P(X <100) =1 —F(100) =1 — (1 — e %) = ¢7'°.

Secondly, one can use the pdf to obtain
o0

o
P(X > 100) :/ f(x) de/ 0.1e 1 dx = 719,
100 100

C. Now, with the coordinate transformation ¥ = 2X + 5 the sample space .4 maps
onto the new sample space B = {y : y > 5} and we have

G(y)=P(Y§)’)=P(2X+5§)’)=P(X§ %):F(y%s)

Obviously, we find for the distribution function of the random variable Y,

1= 6—0.05()'—5) y > 5

0 elsewhere.

G(Y)Z{

Problem 1.24 Let f(x) = 1,0 < x < 1, 0 elsewhere, be the pdf of X. Find the
distribution function and pdf of ¥ = v/X.
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Solution The new variable Y has its own sample space, given by
B:{y:y=ﬁ=>0<y<l}.
The probability set function of the random variable Y is then given by
G() = P(Y <y) = P(VX =y) = PX =),

where y obeys 0 < y < 1. It follows immediately that

2 0 fory <0
G(}’)Z/ fx) dx = fgzdx:yz for0<y<1
> 1 for 1 <y.

The probability density function is defined by g(y) = G’(y) and we find

2y for0<y<l1
g(y)Z{

0 elsewhere.

Problem 1.25 Letf(x) = x/6,x = 1,2, 3, 0 elsewhere, be the pdf of X. Find the
distribution function and pdf for ¥ = X?.

Solution Note that the random variable is discrete. The sample space of the
random variable X is given by A = {x:x =1,2,3}. The new random variable
is defined by ¥ = X2. Thus, the transformation y = u(x) = x> maps the sample
space A onto B = {y : y = 1, 4, 9}. This transformation is, in general, not injective
and the inverse transformation is given by x = u_l(y) = =£./y. Here, however,
the sample space .4 has no negative values, therefore, we choose the single-valued
inverse function x = ,/y.

The probability density function of the random variable ¥ = X? is then given by

—ﬁ fOr =1,4 9
6 y s Ty

0 else.

The probability distribution function is then given by

0 fory < 1
1
= forl <y<4
GOy =) gx)=19 B
; 2=1 ford<y<9
1 for 9 <y.
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Problem 1.26 Suppose that a random variable X has the pdf

x+1 foro<x<l1
fx) = 2

0 elsewhere.

Determine (A) the distribution function F(x), (B) the probability density function of
the random variable ¥ = X2, and (C) the probability P(Y > 0.36).
Solution

A. The distribution function is then given by

. 0 forx <0
Fo = [ fmav= et a5 45 forosr<
- 1 for 1 < x.

B. The transformation is given by u(x) = y = x?. The inverse transformation is
then givenby ™' = x = +./y. Again, the sample space of X has no negative
values, therefore, we choose the single-valued inverse function ™! = x = NAZ
That is

Gy)=P(Y <y)=PX*<y)=PX <.y

with the sample space for the random variable Y given by 0 < y < 1. The
probability distribution function is then

ff:o‘/ydezO fory <0
G(y) = f;=ﬁ[x+%] cl)c=y+T“/y for0<y<1
1 for 1 <y.

The probability density function is then given by g(v) = G'(y),

+ for0 <y <1

1, 1
2Ty
0 elsewhere.

gy =

C. The probability P(Y > 0.36) is equivalent to

P(Y >036) =1—P(Y <0.36) = 1 — G(y = 0.36)
0.36 + +/0.36
o 290 VES0 s

2
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Problem 1.27 Suppose that a random variable X has the pdf

L for —1<x<1

[ =12

0 elsewhere.

Determine (A) the distribution function F(x), (B) the probability density function of
the random variable ¥ = X2, and (C) the probability P(Y > 0.36).
Solution

A. The distribution function is then given by

. 0 forx < —1
Fo = [ gav=1p av=54 1 for—1=x=1
- 1 for1 < x.

B. The transformation is given by u(x) = y = x?. The inverse transformation is
then given by u™' = x = +./y. Here, the sample space of X has negative
values, therefore,

G)=PY<y)=PX*<y)=P(—/y<X=<.Jy)

with the new sample space B = {y : 0 <y < 1} for the random variable Y. The
probability distribution function is then

0 fory <0
G(y) = f_ﬂ%d;mﬁ for0 <y <1
1 forl < y.

The probability density function is then given by g(v) = G'(y),

1

g(y) =2

0 elsewhere.

for0 <y <1

C. The probability P(Y > 0.36) is equivalent to

P(Y >036)=1—P(Y <0.36) = 1 — G(y = 0.36) = 1 — +/0.36 = 0.4.
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1.5 Expectations and Moments

Definition 1.4 Suppose X is a continuous or discrete random variable with
probability density function f(x) and let u(x) be a function of X so that

B = [ uwfedn  ELe] = Yuwrw

X

exists, then E [u(x)] is called the mathematical expectation or expected value
of u(x). An important expectation is the moment-generating function of a
random variable X. Suppose there exists a finite real number ¢ for which the
expectation

E () = / Cefwd B = Y e ds (1.13)

—0o0

(continuous or discrete) exists. Then M (1) = E (™) is the moment-generating
function, with M(r = 0) = 1. In general, for m > 0 an integer, the m-th
derivative of the moment-generating function generates the m-th moment of
the distribution, M (0) = E(X™), so that

E(X™) = /_ X" £ (x) dx; E(X™) =Y " x"f(x). (1.16)

Problem 1.28 Suppose X has the pdf

2 for —2<x<4

18
0 elsewhere.

fx) = {

Find E(X), E [(X + 2)*], and E [6X — 2(X + 2)*].

Solution From the definition of the expected value (1.14) we find

4 2 3 294
2
E(X):/ YA =] =2
_, 18 54 18],

4 (x4 2)* x+2°7" 43
e[
2

E[X+2)] = /_2 3 %
_804

E[6X —2(X +2)°] = 6EX) —2E[(X +2)°] = ——
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Problem 1.29 The median of a random variable X is the value x such that the
distribution function F(x) = 1/2. Compute the median of the random variable X
for the pdf

2x for0<x<1

0 elsewhere.

fx) = {
Solution From the definition of the distribution function we find
F(x)—/x f(y)dy—/)62ydy—xz=1 — x =
—00 0 N 2 \/5

The median is x = 1/ﬁ

Problem 1.30 The mode of a random variable X is the value that occurs most
frequently—sometimes called the most probable value. The value a is the mode
of the random variable X if

f(a) = maxf(x),

(for a continuous pdf). The mode is not necessarily unique. Compute the mode and
median of a random variable X with pdf

Z for0<x<l
fx) = % forl <x<3
0

elsewhere.

Solution The distribution function is given by

0 0 forx<O
x g 2 for0<x<l
ly or) <x<
Fo= [ gwa=thsh s
—o00 §+f1§dy 3 forl <x<3
1 1  for3 <ux.

The median is defined by F(x) = 1/2. This is possible only for 1 < x < 3, where
the distribution function is

1
32
The mode is the maximum value of the pdf (not the distribution function!).
Analyzing the pdf we find, that for 0 < x < 1 the pdf increases linearly, reaching its

maximum value at x = 1 with f(x = 1) = 2/3, then jumpsto 1/3 for 1 < x < 3.
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Thus, the mode of the pdf is

a=1 — f(a) = % = maxf(x).

Problem 1.31 Suppose X and Y have the joint pdf

e for0<x<oo, O<y<oo
flxy) =

0 elsewhere

and that u(X,Y) = X, v(X,Y) = Y, and w(X,Y) = XY. Show that E [u(X,Y)] -
E(X,Y)] = Ew(X.Y)].

Solution We calculate
o0 o0
E(XY) = / dy/ dxxye ™ =1
0 0

o0 o0
EX) = / dy/ dxxe ™7 =1
0 0

o0 o0
EY) = / dy/ deye 7 =1
0 0

E(X)-E(Y) = 1 = E(XY).

and hence

Alternatively, we find for E [w(X, Y)]

E(XY) = /0 "y /O ey e
and for E [u(X, Y)] - E[v(X, V)]
=[] [ ]
- [/Ooodye_yfooodxxe_x} . [/Owdyye_y/()oodxe_x]

Since [y dx e™* = 1 it follows immediately that
o0 oo
EX)-E(Y) = / dxxe_x-/ dyye™”
0 0

_ / ~ / " dvxy e = E(XY) = E[w(X.V)].
0 0



1.5 Expectations and Moments 27

Problem 1.32 If X and Y are two exponentially distributed random variables with
pdfs

f(x) =27, x>0

fo) =4, y=0,
calculate E(X 4 7).
Solution The expected value for X + Y is given by

EX+Y) :E(X)+E(Y)=/0 dxxf(x)+/0 dy yf(y)

o0 o 3
:2/ dxxe_zx+4/ dyye ™ ==
0 0 4

Problem 1.33 Suppose X and Y have the joint pdf

2 forO<x<y, O<y<l
f(x,y)Z{

0 elsewhere

and that u(X,Y) = X, v(X,Y) = Y, and w(X,Y) = XY. Show that E [u(X,Y)] -
Ev(X,Y)] # E[w(X, Y)].

Solution For E [w(X, Y)] we find

1 y 1 1
E(XY):/ dy/ dx2xy:/ dyy3:Z.
0 0 0

For E [u(X, Y)]and E [v(X, Y)] we find

1 y 1 1
E(X):/ dy/ dx2x=/dyy2=—
0 0 0 3
1 y 1 2
E(Y) :/ dy/ dx 2y = / dy2y* = =.
0 0 0 3

Obviously, one finds

and

EXX) - E(Y) = g # - = E(XY).

FN
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Problem 1.34 Let X have a pdf f(x) that is positive at x = —1,0,1 and zero
elsewhere. (A) If £(0) = 1/2, find E(X?). (B) If f(0) = 1/2, and if E(X) = 1/6,
determine f(—1) and f(1).

Solution We know, that the probability of the full sample space has to obey

o0 1
L3770 = 30500 =) 4 £0) +7() = 3 +F(-1) +7().

x=—1
Thus
1

FED +F) = 5

A. The expected value of X? is then given by

1

E(XC) = ) 2f(x) = (=1 (=1) + (0)°£(0) + (1)’/(1)

x=—1
=f(=D) +f(1) = % (1.17)

B. The expected value of X is given by

1

EX) ==Y g =3 g = D +71).  (LI8)
6

x=—1

Note the minus sign in front of f(—1)! From Eqs. (1.17) and (1.18) it follows
immediately that

1 1
fa) = 3 f(=1) = & (1.19)

Problem 1.35 A random variable X with an unknown probability distribution has
amean u = 12 and a variance 0> = 9. Use Chebyshev’s inequality to bound
P(6 <X < 18)and P(3 < X < 21).

Solution Chebyshev’s inequality is given by
1
P(u—no <X <p+no)=1-— (1.20)
n

or, alternatively,

2 2

P(X—plzm <% and  P(X—pl<n)>1-25.
n n
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From the first probability, P(6 < X < 18), we find with u = 12 and o = 3,

p-no=12-3n=6 — n=2
M+n0=12+3n£18 — n=2.
Thus,

1 3
PO<X<18)=P(12-3-2<X<12+3-2) 21— =

For the second probability, P(3 < X < 21), we find with u = 12 and 0 = 3,
p—no=12-3n=3 — n=3
ptno=12+3n=21 —  n=3

Thus,
1
P(6<X<18)=P(12—3'3<X<12+3'3)21—§=—.

Problem 1.36 Two distinct integers are chosen randomly without replacement
from the first six positive integers. What is the expected value of the absolute value
of the difference of these two numbers?

Solution We choose two numbers, X; and X5, from the set 1,2, 3, 4,5, 6 without
replacement. Since the new variable Y is the absolute value of the difference, Y =
|X1 — X>|, the order of both numbers is unimportant. In this case the number of all
possible outcomes is given by the number of combinations,

o (6~ 6 _ 6 _ .
27\2) 26 =2 " 2141 T

where the brackets denote the binomial coefficient (see Eq.(1.29) in Sect. 1.8.1).
The sample space is then given by

C={c:c=(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)
(2.6)(3.4)(3.5)(3.6)(4.5)(4, 6)(5.6)}.

The sample space of the new variable ¥ = |X| — X>| is given by

A={y:y=1,2,3,4,5},
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where the probability of getting the result 1 is given by P(Y = 1) = 5/15. Similarly,
one finds P(Y = 2) = 4/15,P(Y = 3) = 3/15,P(Y = 4) = 2/15and P(Y =
5) = 1/15. The pdf can then be found as

&Y fory=1,2,3,4,5
fo =1

0 elsewhere.

The expected value is then simply calculated by

E(Y)

oo 5
oy =D vfO)
—00 y=1

_5+8+9+8+5_35_7~23
1515 15 15 15 15 3 77

In general we can write for the pdf

o) = "C_;y fory=1,2,...,n—1

0 elsewhere

Note that C} can be written as C; = n(n —1)/2 and for n = 6 we obtain the correct
result 15 (see above). For the expected value we can write

N =S = Sz 2!
y=ly n(n—l)y:ly Y 3

In the last step we used the theorem of finite series,

iizn(n+l) Zz n(n+1)(2n+1)

2 ’
i=1

Problem 1.37 Assume that the random variable X has mean p , standard deviation
o, and moment generating function M(¢). Show that

(5 ]

and
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Solution Since E(X) = u with ¢ and o being constants, we find

E(X—M) _EX)—EW] _ [r—pl

o o o

=0

and with 0% = E [(X — p)?]

E[(x—u)z} :E[(X—;“)z]:ﬁ: 1
o (o2 (o2

With the MacLaurin’s series for M(1/o) = Y22 / £X0 (£)" we find

n!

E{exp |:t (X;H)}} — E[eXr/ae—w/o] — E[eXr/o]E[e—w/g]
g— mi(?ﬁ) e X 1y
= M E|:Z=:n = ¢ H nz=:0 p (G)
= e_’”/GM (;)

Problem 1.38 Suppose that E [(X - b)z] exists for a random variable X for all real
b. Show that E [ (X — b)?] is a minimum when b = E [X].

Solution The expected value of (X — b)? is given by
E[(X —b)’] = E[X*—2bX + b*] = E[X?] — E[2bX] + E[?]
= E[X*] —2bE[X] + b*.

Showing that £ [(X - b)z] is a minimum when b = E[X] requires dE/db = 0 and
d*E/db* > 0. For the first step we find

d%E[(X bY’]=2EX)+26=0 =  b=E[X]
and
dzE X-b)?*=2>0
7o) [(X=b)]=2>

shows that b = E [X] is in fact a minimum.

Problem 1.39 Suppose that R(f) = E[e® "] exists for a random variable X.
Show that R™(0) is the m-th moment of the distribution about the point b, where
m is a positive integer.
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Solution If R(f) = E[e'*~?] exists for a random variable X, then R(?) is a
moment-generating function with

R(t) =E [e’(X_b)] = /00 dx e (x).

—0o0

The m-th derivation with respect to ¢ is given by

dy;ff) =R"(t) = /_ : dx (x— b)" " "f (x).

For t = 0 it follows
o0
R"(0) = / dx (x— b)" (0.
—o0

which is the m-th moment of the distribution with R"(0) = E [(X — b)™].

Problem 1.40 Let ¥ (¢) = InM(¢), where M(t) is the moment-generating function
of a distribution. Show that ¥'(0) = u and ¥”(0) = o>.

Solution We summarize that for a moment-generating function
MO)=1 MO =p M'0)—M©0)*=o0s"

The first derivation is then

fn M (¢) oy M'(0) _
v'(t) = M) = v(0)= M(0) =U
The second derivation is then
P < MOMO MO, MOMO) MO

M(r)? M(0)?

Problem 1.41 Suppose X is a random variable with mean . and variance o2, and
assume that the third moment E [ (X — )*] exists. The ratio E [ (X — u)*] /o? is a
measure of the skewness of the distribution. Graph the following pdfs and show that
the skewness is negative, zero, and positive respectively:

A. f(x) = (x+1)/2,for —1 < x < 1 and 0 elsewhere
B. f(x) = 1/2,for —1 < x < 1 and O elsewhere
C. f(x) = (1 —=x)/2,for—1 < x < 1 and O elsewhere.
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Fig. 1.9 Shown is the pdf f(x) = (x 4+ 1)/2. For the interval —1 < x < 1 the pdf is increasing.
For all other values of x the pdf is zero

Solution For the third moment we find the general expression

E[(X —w)’] = EX°) = 3REXX?) + 3’ E(X) — 4’
= EX?) — 3uEX?) + 2u*E(X). (1.21)
Therefore, we need to calculate the first, the second and the third moment of each

distribution.

A. The graph of the pdf, f(x) = (x + 1)/2, for —1 < x < 1 and 0 elsewhere, is
shown in Fig. 1.9. The first, second, and third moment is given by

1 3 21
1 1
E(X)z/ dxxx+ :x——}—x— = -
_ 2 6 4|, 3
1 4 31
1 1
E(Xz):/ PR ST [
_ 2 8 6|, 3
1 5 41
1 1
EX’) = / TS SRR P
_ 2 10 81, 5

For the variance we find 02 = E(X?) — E(X)? = 2/9. The skewness is therefore
negative with

E[X—w'] _ 5=

333 +23
o3 N
(

3/2

W=
W=

~ —0.57.

1
3
2
9

~—
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Fig. 1.10 Shown is pdf f(x) = 1/2. For the interval —1 < x < 1 the curve is constant. For all
other values of x the pdf is zero

B. The graph of the pdf, f(x) = 1/2, for —1 < x < 1 and 0 elsewhere, is shown in
Fig. 1.10. The moments are

1 X le
E(X)zfdx-z— —0
2 4,

1 2 x31 1
EX)H)=| a&x=—==| ==
X7 /_lxz 6|, 3

1 P x41
EXH)=| d&x===| =o.
o) = [ =1

For the variance we find 0> = E(X?) — E(X)? = 1/3. According to Eq. (1.21)
the skewness is zero with

E[(X —n)*]

>3 =0.

C. The graph is shown in Fig. 1.11. The moments are given by

1 1—x 20X 1
EX) = dxx = ———| =-
1 2 4 61, 3
1 1— 3 41
E(X2)=/ I L Nl
_1 2 6 81, 3




1.5 Expectations and Moments 35

14 F

12 F

08 |

02

_0_2:‘|“‘|“‘|“‘|“‘|

Fig. 1.11 Shown is the pdf f(x) = (1 —x)/2. For the interval —1 < x < 1 the curve is decreasing.
For all other values of x the pdf is zero

1 1— 4 51 1
EXY) = / dxd—> = %— f_() =——.
- -1

. 2 5

For the variance we find 02 = E(X?) — E(X)?> = 2/9. The skewness is positive
with

Problem 1.42 Suppose X is a random variable with mean 4 and variance o2, and

assume that the fourth moment E [ (X — ut)*] exists. The ratio E [ (X — u)*] /o* isa
measure of the kurtosis of the distribution. Graph the following pdfs and show that
the kurtosis is smaller for the first distribution.

A. f(x) =1/2,for—1 < x < 1 and O elsewhere
B. f(x) = 3(1 —x%)/4, for —1 < x < 1 and 0 elsewhere

Solution For the fourth moment we find

E[(X -] = E(X*) — 4pEX’) + 64*E(X?) — 3u* (1.22)
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Fig. 1.12 Shown is the pdf f(x) = 1/2, for —1 < x < 1 and 0 elsewhere

A. The graph for the pdf, f(x) = 1/2, for —1 < x < 1 and 0 elsewhere, is shown
in Fig. 1.12. The first four moments are given by

Lo 2|
E(X):/dx—z— =0
2 4,

1 x2 )c?’l 1

EX)=| dx===| =2

X7 /_1x2 6|, 3
1 3 x41

EXH=|[ d&x===| =0
o) = [ -
1 4 51

1

E(X4)=/dxx—=x— _—

2 10|, 5

For the variance we find 0> = E(X?) — E(X)? = 1/3. The kurtosis is then given
by

_ 4
K:E[(X4u)]
o

=1.8.

©ol—=|unl—
w| o
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oLy
Fig. 1.13 Shown is the pdf f(x) = 3(1 — x?)/4, for —1 < x < 1 and 0 elsewhere

B. The graph of the pdf, f(x) = 3(1 —x?)/4, for —1 < x < 1 and 0 elsewhere, is
shown in Fig. 1.13. The first four moments are then given by

1 3 3 2 491
E(X):/ dx=(x—x') == ror =0
1 4 412 4],

1

1 3 3'3 5 1
o= [ade-n=3[5-5] =1
T4 43 5], 5
1 -4 61
3 3[x X
EX3 = d_ 3_ > == —— — :0
&) /_1 g = x) 44 6],
b3 3[F° X703
E(X“):/ PRENTC N RIS N
-1 4 415 7], 35

For the variance we find 0> = E(X?) — E(X)? = 1/5. The kurtosis is then given
by

— )4 3
ZM 3 =$=2‘14,

W

K =

Bl

Obviously, the kurtosis of the first probability distribution (JC = 1.8) is smaller than
the kurtosis of the second probability distribution (K = 2.14).
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1.6 Conditional Probability and Marginal and Conditional
Distribution

Definition 1.5 Let X; and X, be two continuous random variables with joint
pdf f(x1, x2) and marginal pdfs f(x;) and f(x;). Provided f(x;) > 0, we define
the conditional pdf of the continuous random variable X, as

f(x17x2).

Fel) ==g03

(1.23)

Problem 1.43 Show that the conditional pdf (1.23) has the properties of a pdf!

Solution First we show that P(—oo < X, < o0o|X; = x1) = 1, i.e., that the
conditional probability for —oo < X, < oo, given that X; = xj, is equal to one. We
find

P(—00 < X5 < 00|X] = x1) = /_oo dxr f(x2|x1) = /_oo dmf?(l};l);z)
1 oo 1
- f(xl) /—oo dxzf(-xly.xz) = mf(xl) — 1’

where f(x) is the marginal pdf of f(xi,x,). Secondly, since f(x;) > 0 and
F(x1,x2) > 0, it follows that f(x2]x;) > 0.

Problem 1.44 Consider the joint pdf

) g%x1(1+3x%) for0 <x <2, 0<x <l
1,X2) =
0

elsewhere.
Show that [ f(x1,x2) dxidx, = 1. Find P[(X;, X>) € A], where
1 1
A= f(xlyx2)|0<x1 < 1,1 <x < 5 .

Determine also fi (x1), f2(x2),f(x1]x2), and P(1/4 < X, < 1/2|X; = 1/3).

Solution First we show, that the above pdf is indeed a pdf,

2 1 1 2 1
/ dx; / dx; f(x1,x) = —/ dx1/ dxy x1 (1 + 3)(%)
0 0 4 Jo 0

1 2 1 3 2 1
= —/ dx; x1/ dx, + —/ dx; xlf dx, x%
4 Jo 0 4 Jo 0
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_1x§‘2 ‘1 42 x%)zx%l Vo P
T 20| Ta| 203 l| T 3 A Y

Next we calculate P [(X;, X;) € A], which can also be written as

1 1/2 2 23
Plo<x <1.-<x d dvy x; (143 iy
( A= hgsAas ) / xl/ i (1430) = 55

The marginal pdfs for fi (x1), and f>(x,) are calculated by

! 1 X1
fl(xl):/ dxy f(x1,x2) = — / dxy x1 (1 +3x3) = >
0
2 1 [? 1
frlx) = /0 dxy f(x1,x) = Z/o dxy x1 (1 + 3x§) =3 (1 + 3)6%).
The conditional pdfs f(x;|x2) and f(x;|x;) are calculated by
1 2
X1, X x1 (14 3x x
fxix2) - fln) 4 ( 22) =3
fr(x2) 3 (143x3) 2
fx)  dx(1+433) 1 )
X2|x1) = = == (14+3x3).
fOalx) Ao m > ( 2)

Note that the conditional and marginal pdfs are identical, which means that the
stochastic variables X; and X, are stochastically independent (see Sect. 1.7) Lastly,
we calculate the conditional probability P(1/4 < X; < 1/2|X, = 1/3), which can
be written as

1/2 1/2 1
P(1/4<X1<1/2|X2:1/3):/ dxlf(x1|x2):/ dx) — = —.
1/4 1/4 2 o4

Problem 1.45 Two random variables X and X, have the joint pdf

x1+x forO<x;<landO<x, <1

flxr,x) =

0 elsewhere.

Find the conditional mean and variance of X, given X; = xj, and 0 < x; < 1.

Solution The idea is as follows: First we calculate the marginal pdf f(x;) in
order to calculate the conditional pdf of X,, which is given by Eq. (1.23). With the
conditional pdf of X, we can then easily derive the conditional mean E [X;|x;].
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¢ The marginal pdf of X; is given by f(x;) = ffzo f(x1,x2) dxy, so that

xi+3 for0<x <1

1
Fo) = /0 s [x1 + 3] =

elsewhere.
* According to Eq. (1.23) the conditional pdf of X, is then
% forQ <x; <land0 <x; <1
Flolx) = { n+3

elsewhere.

* The conditional mean of X, given that X; = x; with 0 < x; < 0 is then

00 1
X+ x
EX|x) = / dxy x2 f (x2)x1) = / dxy 1~ 12
—00 0 X1+ 5
1 ! 13x; 42
= d +x3] == :
xi+3 /0 o2 [ 0] 32 +1
Similarly, we find

() 1 x| 4+ x
E(CLn) = / dxr 2 f (islxr) = /0 de 2T
o0

2)61‘}‘%

1 ! 14x; +3
doy [xi2+ 23] == .
x1+%/(; 2[12 2] 62x +1

* The conditional variance is simply given by

1 6x2 + 6x; + 1
= E(G|x1) — EXa|x1)? = — ——
ox, = EXglx) — E(Gln)” = 12 o 17
Problem 1.46 Suppose the conditional pdf of X; given X, = x; is
a1y forO<x;<xxand0<x, <1
falbe) = § @

0 elsewhere

and the marginal pdf of X is

4
coxy, for0<x; <1
flx) = .

0 elsewhere.
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Compute (A) the constants ¢; and c,, (B) the joint pdf of X; and X,, (C) the
probability P (1/4 < X; <1/2 | X, =5/8)and D) P (1/4 < X; < 1/2).
Solution
A. The constant of the marginal pdf of the random variable X, can be calculated by
\ (9] 1 . ¢
li/ dxzf(xz)zc‘z/ dxyx; = — = ¢ =25.
oo 0 5

The constant c; is then calculated by (see also Problem 1.43, properties of a
conditional pdf)

| oo X2 X1 1
1= dx f(xi|xp) = dx; Cl— = 3¢ = ¢ =2.
— 0 x2 2

(o]

B. The joint probability is then

flx1,x2) = f(x)f (xi]x) =

{IOxlxg for0 <x; <x; <1

elsewhere.

C. For the probabilities we find

1

2
P(1/4<X <1/2|X, =5/8) = [ dxi f (x1]5/8)
4
64 (2 12
= — dx 2x; = —
25 ), 25

D. and

3

: Lo
P(1/4 <X <l/2)=[ d)clf(xl)z/l dxl/ dxy f(x1,x2)

/%d /ld 1062 = —29
= X X X == .
y T T 1536

Problem 1.47 Suppose that the joint pdf of X; and X is

2 2
cxyxy for xp <x; <1

0 elsewhere.

fxi,x) = {
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(A) Determine the value of the constant ¢ and (B) evaluate the marginal pdfs f (x)
and f>(x). (C) Then calculate P(X; > X,) (Hint: sketch the region where f(x1, x) >
0.).

Solution First we note that the maximum value of the variable x% s xp, 1.e.,
max (x%) = Xx,. Since x, has to be smaller than 1 we find that xf < 1, which limits
the variable x; to the range —1 < x; < 1. It follows that min (xll) = 0, so that the
above pdf is defined in the (more precise) range 0 < xf < x; < 1. We could also
write

2 2
cxixy for 0<xi<x <1
fx) =4 !

0 elsewhere.

A closer inspection of the limits reveals the following two relations:

* For any given x, with 0 < x, < 1 we find that the variable x; has to comply with
the limits 0 < x? < x; and, thus, — /% < x| < /%2

* For any given x| with —1 < x; < 1 we find that the variable x, has to comply
with the limits x7 < x, < 1.

A. First we calculate the constant c.

(i) Using the fact that the probability over the entire sample space has to be
equal to 1, we can write

(] o0 1 1
14 / dx / dxs f(xt,x2) = / dx, / dxs f(x1. %)
—0o0 —00 —1 x%
1 1

1
4
:c/_Idxlx%/xz dxzxzzgf_ldxlx%(l—x?):ci.

1

We find for the constant ¢ = 21/4.
(i) Alternatively, we could also have written

oo oo 1 Jx2
1 Z/ dx1/ dxzf(xl,xz) Z/ dXQ/ dx1 f(xl,xz)
—00 —00 0 —J%
1 N 1
c/ dx, xz/ dx; x% = E/ dxs x> [x:;’]“_/)ax
0 -y 3 Jo v
1

2 22 1 4
—c/ dx, x;/z = —c= [x;/z] =c—.
3 ) 37 0 21
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Fig. 1.14 Shown is the area for which the pdf, given by Eq. (1.24), is defined (light and dark grey).
The dark grey area is the area for which P(X; > X>)

The joint pdf is given by

Z2x, for 0 <2 < 1
f(xl,xz)=§04x1x2 orfsa=ns (1.24)

elsewhere.

B. The marginal pdfs are then given by

21,2 rl 21 (,2 6
=X dxy xo = % (x7 —x for —1<x <1
fit) =141 gk s (o =)
elsewhere
x2f:/j§72dxl = %xg/z = %xg/z for 0 <x; <1

21
flr) = { ¢
0

elsewhere.

It can easily be shown, that [ f(x;)dx; = 1 = [ f(x2)dxs.

C. Lastly, we calculate P(X; > X3). Since 0 < x% < xp < 1, we need to determine
where x| > x;. Figure 1.14 shows for which values the pdf is defined (light and
dark grey area). For P(X; > X;) the pdf is defined by the dark grey area only.
We calculate (see above case (1))

1 X1
PXi =Xy = / dx; / dxs f(x1,x2).
0 Xf
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Here x, runs from x% to x; instead of x% < x» < 1, since we are only interested
in the dark grey shaded area. With the joint pdf given by Eq. (1.24) we calculate

21 ! . 21 (! 3
P(X, = X5) = T/o dxlx%/z dxyx, = §/0 dxy (x} —x0) = %
X

Alternatively, one could also calculate (see above case (ii))

L vm
PXi =Xy = / dxy / dx) f(x1,x2).
0 X2

In this case x; runs from x, to /x> and we find

21 (! Ve 3
O / dn / o = =
0 X2

20°
Problem 1.48 Let Y (t,;) = InM(t,t;), where M(t;,t;) is the moment-
generating function of X and Y. Show that (k = 1,2)
av(0,0) 02¥(0,0) o 02¥(0,0) Co
—_— R —_— R —_— \%
oty k al‘]% k dt1 01y

yields the means, the variances, and the covariance of the two random variables.

Solution We repeat briefly that

aM(0,0)
oty B

M(0,0) = 1,

9*M (0, 0) [8M(0,0):|2 5
M -

=0 s
3t]% alk k

and that the covariance is defined as

Cov = 0’M(0,0)
= a9, M1M2.
With that we can now easily derive
W(n,n) 1 oM, 1)
ot B M(l‘] s l‘z) oty ’
so that
v (0,0) 1 0M(0,0)

o M©0,0) on M
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Secondly, we have

Pw(n,n) 1 |:82M(t1,t2)M i) (8M(t1,t2))2:|
: ) |

o M1y, 1)? o
so that
329 (0, 0) 1 32M(0,0) aM(0,0)\> 5
o M(0,0)>2 [ or ©.9 ( o ) %

Lastly, we have

azq/(ll,lz) _ 821nM(t1,t2) _ a |:alnM(l‘1,l2):| ad [ 1 8M(t1,t2)}

o  anon an an T [ M(t.n) o6
_ 1 ¥M@n) L OM(t, 1) OM(t1,12)
- M(l‘] s l‘z) 8t1 al‘z M(l‘l s l‘z)2 atl atz '

From that it follows immediately that

1 3M(0,0) 1 aM(0,0) aM(0,0)  8>M(0,0)
— 5 = — Uiy = Cov.
M(O, 0) dt1 01y M(O, 0) o dtr 0t 0t

Problem 1.49 Given the joint pdf of X and X>,

21022 for0O<x; <xp <1
f(xl,m):g 2 e

0 elsewhere,

find the conditional mean and variance of X; given X, = x, with 0 < x; < 1.

Solution In order to calculate the conditional pdf f(x1]x2) = f(x1,x2)/f(x2),
which is needed to calculate the conditional mean and variance, we calculate first
the marginal pdf f(x,),

o0 X2 7 6 f O < < 1
fln) = / dx; f(x1,x) = 21@/ dx; x% _ § X, lor X2
- 0

00 0 elsewhere.

The conditional pdf is then simply

2
% for0 <x; <x; <1
2

f(x1,x2) _

3
flalx) = f(x2) 0 elsewhere.
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The conditional mean is then calculated by

o0

EXi|x) = /

—00

3 (% 3
dxy x1f (x1|x2) = —3/ dx; X} = ~x
X3 Jo 4

for 0 < x, < 1. The second moment of X; given X, = x; is then

E(CIx) = /

—00

2 3 (" 4_ 35
dxy xif (x1|x2) = —3/ dx) x| = §x2
X5 Jo
for 0 < x, < 1. The conditional variance is then

E[[Xl —EX, |x2)]2‘ xz] = E(X}|x2) — E(X1|x2)*

3, 9 3 5

527167 T 50

Problem 1.50 Five cards are drawn at random without replacement from a deck
of 52 cards. The random variables X;, X, and X3 denote the number of spades,
the number of hearts, and the number of diamonds that appear among the 5 cards
respectively. Determine the joint pdf of X, X», and X3. Find the marginal pdfs of
X1, X5, and X3. What is the joint conditional pdf of X, and X3 given that X; = 3?

Solution The joint pdf is given by

13013 1313

C C C CS —X]—Xp—X3
52

1, x2,x3) = e

0 elsewhere,

forx1,2,3 = O, 1,...,5

where we used the binomial coefficient (1.29), see also Problem 1.36. The marginal
pdfs are then given by

13 5—x1 5—x1—x2

13 ~13 ~13
CSZ Z Z sz st CS—Xl—xz—Xs
5 =0 x3=0

flx) =

13 5—xp 5—x1—x2

13 ~13 ~13
f(x2)_ C52 Z Z C C CS—X1—X2—X3

5 x=0 x3=0

and

13 5—x3 5—x3—x]

f('x3) - Z C13Cl3cé3—x1—xz—x3'

x1—0 x=0
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For the joint conditional pdf of X, and X3 given that X; = 3 we find

fx1 = 3,x2,x3)
feo,xly=3)=————
fla =3)
13 13 13
sz CX3 C 2—xr—x3

—x2 ~13 1313 ’
sz OZ C C CZ—xz—xz

Problem 1.51 Suppose that the joint pdf of X and Y is given by

2 forO<x<y, O<y<l1
fxy) =

0 elsewhere.

Show that the conditional means are (1+x)/2for0 < x < landy/2for0 <y <1,
and the correlation function of X and Y is p = 1/2. Show also that the variance of
the conditional distribution of ¥ given X = xis (1 —x)?/12 for 0 < x < 1, and that
the variance of the conditional distribution of X given ¥ = yisy?/12for0 <y < 1.

Solution A closer inspection reveals:

A. For any given X = x the variable Y complies withx <y < 1.
B. For any given Y = y the variable X complies with 0 < x < y.

* First we calculate the marginal pdfs:

[’} 1
f(x):/ dyf(x,y):/ dy2=2y!=2(1-x) for0<x<1

—0o0

o0 y

f(y):/ dxf(x,y):/ dx2 = 2x|) = 2y for0 <y < 1.

—00 0
It can easily be shown, that [ f(x)dx = 1 = [ f(y)dy. Also, the random variables
X, and X, are not stochastically independent, since f(x;,x2) # f(x1)f (x2)-

* Next we calculate the conditional pdfs:

flxly) = f](fzyf) 2%:% forx<y<land0<x<1
fley 2

forO0 <x<yand0 <y < 1.

1
TOW =y = 3=y ~ (=

* The conditional mean of X given Y = y is

o0 y
E(le)=/_ dxxf (x]) :/O dx;ﬁ = 07 zg

o0
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for 0 < y < 1. The conditional mean of ¥ given X = x is

[ awroto = [ o

2

E(Y|x)

L 1 —x2 _1+x
« 2(1-x) 2

1y
1—x2

forO <x < 1.
The conditional variances can be calculated by

oy = E (X = EXIYP Iy) = EQCly) — EXI*, (1.25)
so that
Yo 2 By 2 2 g2
o =B — B = [ @t - =TT TR Y
o ¥y 4 3yl 4 3 4 12
for0 <y < 1and
1 2 2
1+
oy = E(F*[x) — E(Y]x)? = / ay - 0D
. 1—x 4
. y? 1 (1+x)2_ 1—x (1+x)?
31 —x)l 4 T 3(1-x 4
_1+x+x2 1—}—2)c—i—x2_4—i—4)c—}—4)c2—3—6)c—3x2
B 3 4 B 12
_ 1 —2x 422 _a —x)?
B 12 12
where we used 1 —x* = (1 —x)(1 + x + x?).
To calculate the correlation coefficient (function), p, which is defined as
E|(X — po)(Y — py E(XY) — ity
p— EIX =m0 )] _ EXY) = sy, (1.26)

0x0y 0x0y

we need to determine (i, iy, and E(XY), as well as E (X?) and E(Y?). We start
with

po=E0 = [ : a [ Z dyxf(x.)

1 y 1 1
=/ dy/ dx2x=/ dyy* = =
0 0 0 3
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and

p=E0) = [ o [~ anary
1

:/()ldx/xldy2y:/01dx(l—x2): [x_x;l):%'

The expected value of XY is

1 y 1 1
E(XY) :/ dy/ 2xy=/ dyy’ = 1
0 0 0

For the variances we need to calculate

2 : Y 2t 51
E(X):/dy/dx2x=§/dyy=g
0 0 0

1 1 2 1 1
E(Yz) = / dx/ dy2y2 = 5/ dy (1 —x3) = X
0 X 0

The variances are then calculated by

_EXY) — papy ! [1 1 2:| 18 1
p=————"=18| - —=- = =
0,0, 2

Problem 1.52 Let f(r) and F(¢) be the pdf and the distribution function of the
random variable 7. The conditional pdf of T given T > 1o, t( a fixed time, is defined
by f(t|]T > to) = f(t)/ [l — F(ty)],t > t, O elsewhere. This kind of pdf is used
in survival analysis, i.e., problems of time until death, given survival until time #.
Show that f(¢|T > ty) is a pdf. Let f(f) = ¢, 0 < t < 00, 0 elsewhere, and compute
P(T >2|T > 1).

Solution Since there are no negative times (¢ > 0), we find for the distribution
function F(to) = [’ dtf(t) and for the pdf f(r)

1= " atf ) = / " o) + / a0 = Flo) + / i),

fo
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from which it follows that
o0
/ dtf(t) = 1—F(t). (1.27)
o
For the conditional pdf we find
o0 1 o0
dtf(t|T > t :—/ dif(r) =1,
[ asar>w =g [ aro

where we used Eq. (1.27) in the last step. With f(#) = ¢/, 0 < t < 00, 0 elsewhere,
we find from the definition of the distribution function that F(fo = 1) = 1 — e~ L.
The probability of P(T > 2|T > 1) is then given by

P(T>2|T>1) :/2 dtf(t|T > 1) = 1_;%/2 dtf(t)

o0
= e/ dte™' = ¢\,
2

1.7 Stochastic Independence

Definition 1.6 Let the random variables X; and X, have the joint pdf f(x1, x2)
and marginal pdfs f(x;) and f(x;). The random variables X; and X, are
stochastically independent if and only if f(x;,x) = f(x1)f(x2). Otherwise
they are stochastically dependent.

Problem 1.53 Let the joint pdf of X; and X, be

x1+x forO<x;<1,and0<x; <1

fl,x) =

elsewhere.

Show that the random variables X; and X, are stochastically dependent.

Solution The marginal pdfs are given by

o) 1
fa) = / s fr.22) = / o> (1 +0) = + 3
—00 0

o) 1
flx) = /_ dx) f(x1,x2) = /0 dxy (x1 +x2) = xo + %
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Obviously, f(x1,x2) # f(x1)f(x2), thus the two random variables X; and X, are
stochastically dependent.

Problem 1.54 Show that the random variables X and Y with joint pdf

277 for0<x<y,0<y<oo

Sy = {

0 elsewhere

are stochastically dependent.

Solution The marginal pdfs are given by
o0
flx) = / dy2e ™ = 2¢7% 0<x<o0
y
fo) = / dx2e ™7 =271 —e”] 0<y<oo
0

Obviously, f(x,y) # f(x)f(y), which means that the random variables X and Y are
stochastically dependent.

Problem 1.55 Consider the joint pdf of two random variables X and Y,

X(HT?’}’Z) for0<x<2,0<y<1

0 elsewhere.

fxy)

Are the random variables X and Y stochastically independent? Compute f(x|y) and
hence P(1/4 < X < 1/2|Y = 3).

Solution The marginal pdfs are given by

P ox(14+3y)  x ! X 1 X
f(X)Z/ dyTZZ/ dy(143y) = 2 [y +']y = 3
0 0

for0 < x < 2, and

2 1+ 3y? 1+ 3y?) 2 1+ 3y?
f@)zfodxx(—zy)z(—zy)/odxx:%

for 0 < y < 1. Obviously, f(x,y) = f(x)f(y), thus the two random variables are
stochastically independent. The conditional pdf for the random variable X given
Y=yis

o )= @y 20 +3) 2 x
VEF0) T 4 (+3m) 2
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for 0 < x < 1. Obviously, the conditional pdf does not depend on the variable y,
thus

1/2 e 1/2 3
P(1/4 <X < 1/2|Y:3):/ dxf(xly=3) = [—} = —.
1/4 4 1/4 64

Problem 1.56 The random variables X and Y have joint pdf

4x(1—y) for0<x<1,0<y<1

0 elsewhere.

fly) = §

FindPO<X <1/3,0<Y <1/3).
Solution The probability is easily calculated by

1/3 1/3 5
P(O<X<1/3,0<Y<1/3)=/ dx/ dy4x(1—y):ﬁ,
0 0

Problem 1.57 Let X;,X,, and X3 be three stochastically independent random
variables, each with pdf

Fla) = {e"‘ for0 < x

0 elsewhere.

Find P(X; < 2,1 < X; < 3,X3 > 2).

Solution Since the pdfs of each variable are stochastically independent, we find
easily the joint pdf as

Fxrx,x3) = f)f (0)f (x3) = e 17270,
The probability is then given by

PX; <2, 1 <X;<3,X3>2)

2 3 00
[ [ [
0 1 2
S N o 1171 171
= dxie ™ dxre™™ die ™ =|1-— _ | =
0 1 2 e2lle €3]

~ 0.037.
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Problem 1.58 Show that the random variables X and Y with joint pdf

e for0<x<o00,0<y<oo

fxy) { 0

elsewhere
are stochastically independent and that
E(*)=1-n72 t<1.

Solution The marginal pdfs are
o0
flx) = / dye ™ =¢™ 0<x<oo
0

o0
f») :/ dxe ™7V =¢e7? 0<y<oo.
0

Since f(x,y) = f(x)f(y) both variables are stochastically independent. We further

find
I‘(X+Y) / dx/ dy eT(X+y)f(x y) / dx/ dy et(x+y)

=/ dxe (1~ ’)/ dye ™) = fort < 1.
0 0 (l—t)

Note that the integration converges only for # < 1.

Problem 1.59 Show that the random variables X and Y with joint pdf

ley(l—y) for0<x<1,0<y<1
fxy) =
elsewhere
are stochastically independent.
Solution The marginal pdfs are
1
f(x):/dyley(l—y):Zx 0<x<l
0
1
f(y):/ dx12xy(1 —y) = 6y(1 —y) 0<y<l.
0

Obviously, f(x,y) = f(x)f(y), which means that the random variables X and Y are
stochastically independent.
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1.8 Particular Distributions

1.8.1 The Binomial Distribution

The pdf of the binomial distribution is given by

7o = (%)=, (1.28)

where the binomial coefficient describes the number of combinations (see also
Problem 1.36) and is given by

ch = (”) __ (1.29)

x)  xl(n—x)!

The mean and variance are given by u = np and 0> = np(l — p).
The binomial distribution is commonly denoted by B(n,p). The moment-
generating function of the binomial distribution is defined by

M0 =[(1=p) +pe]". (1.30)

The binomial theorem can be written as

n

@+ => (Z) Ry, (1.31)

k=0
Problem 1.60 If the moment-generating function of a random variable X is
12\
M) =|=+=€),
0=(5+3¢)

find P(X = 2 or 3).

Solution By comparing the moment-generating function with the defini-
tion (1.30) above we find n = 5 and p = 2/3. The binomial pdf is then given

RCIGION
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The first factor is the binomial coefficient (1.29). The probability of P(X =
2 or 3) = P(2) + P(3) is given by

X 5—x
remn- 2 () C) -

x=2,3

Problem 1.61 The moment-generating function of a random variable X is

2 13
M(t) = (§ =+ ger) .

Show that

5 x 9—x
P(u—Za<X<u+2cr)=Z()9c) (%) (%) .

x=1

Solution If we compare the moment-generating function above with the def-
inition given by Eq.(1.30) we find p = 1/3 and n = 9. With & = np and
0% = np(1—p) we find u = 3and 0% = 2, so that u+20 ~ 5.8 and u—20 ~ 0.2.
Since the binomial distribution is discrete we find

5 X 9—x
P(,u—2cr<X<,u+2cr)=Z()9c) (%) (%) .

x=1

Problem 1.62 The probability that a patient recovers from heart surgery is 0.4. If
15 people have had surgery, what is the probability that (A) at least 10 survive (B)
from 3 to 8 survive (C) exactly 5 survive? (D) Using Chebyshev’s inequality, find
and interpret the interval u £ 20.

Solution The general form of the binomial distribution is given by Eq. (1.28),
where the binomial coefficient is defined by Eq.(1.29). We use the following
notation: The probability of surviving is p = 0.4. Consequently, the probability
of dying is 1 — p = 0.6. The experiment comprises n = 15 people, so that the pdf
can be written as

£ = (f) (0.4) (0.6)' . (1.32)

Figure 1.15 shows this particular distribution. We further find:

A. The probability that at least 10 people survive is given by

15
P(X>10) = ) f(x) = 0.0338,
x=10
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f
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Fig. 1.15 Shown is the binomial distribution as given in Eq. (1.32)

which is the sum of the probabilities that exactly 10,11, 12,13, 14, and 15
people survive.
B. The probability that 3-8 people survive is given by

8
PGB <X <8 =) f(x)=08778,
3

the sum of the probabilities that exactly 3, 4,5, 6, 7, and 8 people survive.
C. The probability that exactly 5 people survive is given by

P(X =5) =f(5) = 0.1859.
D. Next, we find 4 = np = 15-0.4 = 6 and 6> = np(1 — p) = 36/10, so that

n—20 =6-12/4/10 = 22 and u + 20 = 6 + 12/4/10 = 9.8. With
Chebyshev’s inequality, see Eq. (1.20) from Problem 1.35, we find withn = 2

1
Plu—no <X<p+no)=1-—
n

PB3<X<9 >

AW

The probability that between 3 and 9 people survive is at least 3/4. In fact the
exact probability is

9
PB<X=<9) =) f(x)=09391
3
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Problem 1.63 If the random variable X has a binomial distribution, B(n, p), with
parameters n and p, show that

2
n n n

Solution We remember that
EX)y=pu=mnp EXX*) = np +n(n— 1)p.

Therefore, we find
X 1
E(—) =Ex) =L =)
n n
and

X 2 X2 2 1 2
E [(— —p) ] —E (—2 _ Py +p2) = S EX?) — PEx) + p?
n n n n

np + n(n — 1)p? _ 2p*n oy

- n? n tp
_wrnpt ot L p(-p)
n? no

1.8.2 The Poisson Distribution

The Poisson distribution is given by

pe’

fx) = (1.33)

x!

The mean and variance are given by p = p = o > 0. The general form of
the moment-generating function for a Poisson distribution is

M) =) e"f(x) = exp[p(e' — )]. (1.34)
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Problem 1.64 If the random variable X has a Poisson distribution such that P(X =
1) =P(X =2),find P(X = 4).

Solution The probability of P(X = 1) is given by f(1) and the probability of
P(X = 2) is given by f(2). Since P(X = 1) = P(X = 2), we calculate

pl e’ pze_P

f) =12 = T TR

which leads to p = 2. The Poisson distribution for the random variable X is then
given by

2%¢?
fo) ="
x!
The probability of P(X = 4) is then
2472 2
P(X = 4) = f(4) = :' =37 % 0.00.

Problem 1.65 Given that M(¢f) = exp[4(e' — 1)] is the moment-generating func-
tion of a random variable X, show that P(u — 20 < X < u 4+ o) = 0.931.

Solution By comparing M(¢) = exp[4(e' — 1)] with the general form (1.34) we
find p = 4. Since the mean and the variance for a Poisson distribution are given by
w = 0% = p, we find immediately

;
4
P(u—20 <X<u+2cr)=P(O<X<8)=e_4§ :—'%0.931.
X:
x=1

Note that the random variable X is larger than O but smaller than 8, i.e., the sum
extends from 1 to 7.

Problem 1.66 Suppose that during a given rush hour Wednesday, the number of
accidents on a certain stretch of highway has a Poisson distribution with mean 0.7.
What is the probability that there will be at least three accidents on that stretch of
highway at rush hour on Wednesday?

Solution The Poisson distribution is given by Eq. (1.33), where the mean and the
variance corresponds to p, i.e., p = u = . The Poisson distribution with mean
u = 0.7 can, therefore, be written as

0.7%¢07

f@)=—7"



1.8 Particular Distributions 59

where x denotes the number of accidents. Since P(X > 3) = 1 — P(X < 3), we find

0 706_0'7 0 7le—0.7 0 726_0'7
{— |: . . . i|

2
PX=3)=1-) fx) TR TR —T
- ! ! !

1 —1[0.4966 + 0.3476 4 0.1216] = 1 — 0.9656
0.0341.

There is a 3.4 % probability that at least three accidents occur on that stretch of
highway.

Problem 1.67 Compute the measures of skewness and kurtosis of the Poisson
distribution with mean pu.

Solution The skewness and kurtosis are given by

_ E[(X = w)’] & = Elox— ']

S
o3 ot

(1.35)

where the third moment is given by Eq. (1.21) and the fourth moment by Eq. (1.22).
We know that the mean and the variance for the Poisson distribution is given by
p = [ = 02, so that the third and fourth moment can also be written as
E[(X — p)*] = E[X’] = 3pE[X’] + 2p°
E[(X —p)'] = EIX"] — 4pE[X°] + 6p*E[X*] - 3p*.
The moment-generating function for the Poisson distribution is given by Eq. (1.34).
The first four derivatives are
M (t) = pe'M(t)
M (1) = pe'M(1) + p*e*' M(r)
M" (1) = pe'M(1) + 3p*e*M(1) + p>e* M)
M*(t) = pe'M(t) + Tp*e® M(t) + 6p> M (1) + p*e* M(7).
With M(r = 0) = 1 the expectations are then given by
EX]=M@t=0)=p
E[X’]=M"(t=0)=p+p’
EX’]=M"(1t=0)=p+3p>+p’
EXY| =M'(t=0)=p+7p° +6p> +p*.
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The third and fourth moment is then
E[X=p’l=p
E(X—p)'] =p+3p°
The skewness and kurtosis are then given by

1 +3p2 1
p N/ p p

Problem 1.68 Suppose the random variables X and Y have the joint pdf

fory=0,1,2,3,...;andx =0,1,2,....y

6_2
f(x, y) — ) xlo—x)!
0 elsewhere.

Find the moment-generating function M(#;, t,) of the joint pdf. Compute the means,
variances, and correlation coefficient of X and Y. Determine the conditional mean

E(X]y).

Solution The moment-generating function is given by

M(t, 1) = Z Zextleyfzf(x y) = Z Zextl eytzx'(y x)'

y=0 x=0 y=0 x=0
Note that the sum over the variable x extends from 0 to y and not to infinity (compare
with the pdf)! Multiplying this expression by y!/y! we find

[e.o]

f S ()

e

Mt 1) = ¢~ ZZ

where we used the definition of the binomial coefficient (1.29). According to the
binomial theorem (1.31) the summation over x yields (1 + ¢'')” and we obtain

M(fl,fz)—ezz (14e1y = —2i

y=0

t2 +et1+t2]

With the series for the exponential function we obtain the moment-generating
function

M, ) = ele2Fentn=2)
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The means of the random variables X and Y are given by the first derivation with
respect to #; and #, respectively. For the derivations we find therefore

3M(t1 ) tz) — e(t1+t2)e(et2 +et1+t2_2) = ILLX _ BM(O, 0) _ 1
oty ot
and
aM(tl ’ tz) — I:etz + e(l‘] +t2):| e(etZ +ell T2 _2) N = aM(O’ 0) -9
oty o

For the variance we need to calculate the second derivation. With u, = 1 we obtain

2

%217[2) — I:l + e(tl+t2)] e(t1+[2)e(ex2+e,l+,2_2)
on

o = M _ 2

2 pr=2-1=1
or

and with p, = 2

2

0 Ma(;217t2) — I:l + (etz + e(11+t2)):| (el‘z + e(l‘l-‘rl‘z)) e(e’2+e11+12—2)
2

»  9°M(0,0)

= Y
oy ¥

py =6—4=2.

For the correlation coefficient we calculate first

2

d M([lsh) — [1 + (el‘z + e(l‘l-‘rl‘z))] e([1+[2)e(etz+ezl+zz_2)
01,0ty

92M (0, 0)

= E(XY) = 3.
dt1 0t ( )

The correlation coefficient is then given by (compare with Eq.(1.26) in Prob-
lem 1.51)

EXY)— pxpry 3-—1-2 1
p= =

0.0y V2 2
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For the conditional mean E(X|y) we need to calculate first the conditional pdf f(x|y),
which is given by f(x|y) = f(x,y)/f(y), where the marginal pdf of Y is given by

fO) =Y f(x.y)

y -2 -2 -2

e e y! e 2 < e 2
0= Y R ()5

! |
x=0"" y x=0 y: x=0

where we again multiplied by y!/y! and where we also used the fact that

>(5)-2

This can easily be verified by using the binomial theorem (1.31). The conditional
pdf is then given by

fey) e Y
fo)  xy—xle22y T xly—x!

The conditional mean is then calculated by

Jxly) =

y

E(X]y) = xf(xly) = sz

x!(y — i
x=0 x=0 (y x)

With the binomial theorem (1.31) we find
y y y
EX =277 =277 2}'_1 ==,
(X1y) x§=0x (x) y 5

where we used Y }_, k (Z) =n2""1.

1.8.3 The Normal or Gaussian Distribution

The Gaussian distribution is given by

1 a=p?

me‘Tz . (1.36)

fx) =

(continued)
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and commonly denoted by n(u,o0?). The moment-generating function is
given by

o’
M(t) = exp (,ut + T) . (1.37)

As a special case, consider the probability

P(a<X<b)=N(u)_N(a_M), (1.38)
o o

where N(x) is given by the integral

N(x) = ~*/2gy, (1.39)

1 X
A 271 —00
which is based on the distribution 7(0, 1), i.e., a normal distribution with zero
mean and a variance of 1.

Problem 1.69 If Eq. (1.39) holds, show that N(—x) = 1 — N(x).

Solution From the definition of the probability distribution function we know
that

1 2
N(—x) = — / e 2dy. (1.40)
( LY, 21w J—o
We consider now N(x) with the substitution z = —y with dz = —dy and obtain
N(x) L [ L [Ty (1.41)
= —— h = — e Z. .
V21w Joo V21 J—x

From the definition of the pdf we know that

| = 1 /00 e_yz/zdy _ 1 /_X e_yz/zdy T 1 /oo e_yZ/zdy
V2w J—00 V2w J—00 N2 J—x
= N(—x) + N(x), (1.42)

where we substituted the results from Eqgs. (1.40) and (1.41). It follows that N (—x) =
1 —N(x).
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Problem 1.70 If X is n(75, 100), find P(X < 60) and P(70 < X < 100).

Solution We can immediately deduce that © = 75 and 0> = 100. The
distribution function is then given by

fO) = e T
x) = e~ 200
| 10427
For the probabilities we obtain
60
P(X < 60) = f(x)dx = 0.067
—00
100
P(70 < X < 100) = f(x)dx = 0.69.

70

Problem 1.71 If X is n(u, o), find a so that P(—a < (X — ) /o < a) = 0.9.

Solution From definition (1.38) we know that

P(—a<X;’u <a) =P(p—aoc <X < pu+ao)
= N(a) — N(—a)
= 2N(a) — 1,

where we used N(—x) = 1 — N(x). Since the probability is P(—a < (X — p)/o <
a) = 0.9 we find N(a) = 0.95, so that according to Eq. (1.39),

1ol
N(a) = “dy = S+ St (i) £ 0.95.

1 a

v 2 V2

The error function is solved numerically and we find a = 1.645.

Problem 1.72 If X is n(u, o), show that E(|X — pu|) = 0 /2/7.
Solution The expectation of E(|X — j|) is given by

_a—w?

1 o0
E(X—pl) = —— x— ple” 207 dx.

The integral has to be split up, where x < p in the first and x > p in the second
integral, so that

o0

E(X — ) = —! Uw( T )—“fd}
— [ — —Xx)e 20 X X — e 20 X | .
# o2 |LJ-co # n :
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In the first integral we substitute z = (¢ — x)/o and in the second integral we
substitute z = (x — @)/o. We obtain

E(|X—,u|)——|: /ooze 2dz+/ooze_222dz:|.

By swapping the limits of the first integral it follows with [;° zexp (—z%/2) dz = 1

that
E(IX—MI)—r/ Zdz—\/gcr.

Problem 1.73 Show that the pdf n(u, o) has points of inflection at x; = u % 0.

Solution For inflection points we have to show as a necessary condition that
d*f(x)/dx* = 0. Thus,

_ =
202

1
f(X)=Gme
dfx) 1 (- )e_u—mz
& o

Frw [ (x—w} i
- ———|e 22 =0.

dx? o3/ 2
We consider only the term in square brackets and obtain
(x—p)? =o? == K =2ux+pt—o? =0,

This quadratic equation can easily be solved and we obtain two solutions x; = u=+o.
The sufficient condition requires d*f(x)/dx> # 0 at the points of inflection, so that

3 )2 )
d’f(x) n (x 2,uv) :|e_(20;2) .
o

dx3 - 0'5\/% (.X - /"L) |:_3

At the point of inflection we have

d? 2
SOy et £ 0,
dx? Xi ot N2
since 0 # O per definition. If 0 = 0 the distribution function f(x) is a delta

distribution (see Problem 1.77) and the consideration here is obsolete.
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Problem 1.74 Suppose a random variable X has the pdf

2
2 ex/2

f@ = { v
0

for0 < x < oo

elsewhere.

Find the mean and the variance of X.

Solution The mean is given by

nw=EX) = «/_/ dxxe ™12 = \/g,

since [;° dxxexp (—x?/2) = 1. The variance is given by

/ dxx2e™ p_2 (1.43)
«/_ —. .

o> =EX?) —

Consider an arbitrary random variable with the Gaussian pdf n(0, 1), from which we
know that the mean is zero and the variance is one. The pdf of that random variable
can be found as

I _2
2

e
V21

Since the mean is zero (u = 0), the expectation for X? is equal to the variance
o = 1 and therefore

Jx) =

1202 = E(X?) = dxx*e” g = dxx*e %,

el

since the integrand is an even function. If we compare this result with Eq. (1.43) we
find immediately

2
ol=EX)-put=1-=.
T

Problem 1.75 Let X; and X, be two stochastically independent normally dis-
tributed random variables with means p; and p, and variances o7 and 0,. Show
that X; + X5 is normally distributed with mean (u; + u2) and variance 012 + 022.
(Hint: use the uniqueness of the moment-generating function.)
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Solution The moment-generating functions for the normally distributed random
variables X; and X, can be written as

o2t
My, (1) = E[¢"'] = exp (umf + = )

ol
My, (1) = E[¢?'] = exp (,uxzt + X; ) .

Let’s introduce a third moment-generating function for the normally distributed
random variable X; + X, with mean p,, +, and variance oy, 4x,,

2 2
o t
My, +x,(t) = E I:e(x1+x2)t:| = E[exltexzt] = exp (/“LX1+X2t + %) .

Since the random variables X; and X, are stochastically independent, we find for the
expectation

E[exltexzt] — E[exlt] ‘E[€x2t] .

This means, that the moment-generating function for the random variable X; + X,
can also be written as

My, +x,(t) = Mx, (1) - Mx, (1)

o2 ol 1
= exp |t + == | -exp | ot + =3

t2
= exXp ((Nx1 + psz)t+ (szl + 0—)522) _) '

2

Obviously, Mx, +x, (¢) is the moment-generating function of a normal distribution.
Thus, the new random variable X; + X; is also normally distributed with mean and
variance given by

Hxix, = My + Ux,

— A2 2
Oxi+x; = le + o-xz'

Problem 1.76 Compute P(1 < X? < 9)if X is n(1, 4).

Solution From n(1,4) we deduce that 4 = 1 and 0 = 2. Itis
P(1 <X*<9)

=Pl<X<3)+P3<X<-1
=PX<3)-PX<1)+PX<-1)—PX<-3)



68 1 Statistical Background

X - 3— X — 11—
o o o o

X—p —1- X—p —3—
+P( * o “)—P( * “)
o o o o

v () () e (5 v (5FH):

By substituting © = 1 and 0 = 2 we obtain

e en=a(5) () () ()
=N1)=N(©) +N(=1)=N(-2)

=0.8413—-0.5+0.1587—0.0228
= 0.4772,

where the values for the probability distribution were taken from tables.

Problem 1.77 Suppose the random variable X is normally distributed with
n(j, o). What will the distribution be if 02 = 0?

Solution The Gaussian pdf is given by

1 _ a—p)?
202 .

f&) =

e
o2m
The limit for o — 0 yields the delta distribution,

_a—w?

e 0 =38(x—p),

lim f(x) = lim
(T—)Of‘( ) o—0 (o} 27-[

with F(X) = 1 forx > p and F(X) = 0 forx < u.

1.9 The Central Limit Theorem

Suppose that X;, withi = 1,2, 3, ..., nis arandom sample from a distribution
that has mean p and variance o2. Then the random variable

(continued)
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X — X, —
y, = ZimXionn oK = p (1.44)
J/no o

has a limiting distribution that is normal with mean 0 and variance 1.

Problem 1.78 Compute an approximate probability that the mean X,, of a random
sample of size 15 from a distribution having pdf

3x2 for0O<x<1

0 elsewhere

J&) = {

is between 3/5 and 4/5.

Solution First, we calculate the mean and variance of the pdf,

1
3
I =E(X)=/ dx3x’ ==
0 4

1
9 3 9 3
2 2 2 4
B = [ axzt o =323
0" =EX) —u /oxx 6-5 16 30

Now we search for an approximate probability that the mean X,, of a random sample
of size n = 15is between 3/5 and 4/5. In other words, we search for the probability
P(3/5 < X, < 4/5). In order to do so we introduce the new variable ¥, given by
Eq. (1.44), so that the expression for our probability transforms as

p(§<5(<‘§‘) :P[«/ﬁ(3/5—u) _ V- «/ﬁ(4/5—u)]'

o o o

Basically, we subtracted the mean p from each parameter in the expression and
multiplied the results by +/n/c. Obviously, the parameter in the middle corresponds
to the new variable Y,,. Substituting now the mean and variance we obtain

3 o 4\ [ V153/5-3/4) V15(4/5—3/4)
P(§<X<§)—P|:—m <Yn<—m :|

Since the new random variable Y, is normally distributed with # = 0 and 02 = 1
we can use the Eq. (1.38) and obtain

P(g <X < g) =P(-3<Y,<1)=N()—-N(-3) =084,

where the values for N(1) and N(—3) were taken from tables.
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Problem 1.79 Let Y be a binomial distribution B(72, 1/3). Approximate P(22 <
Y < 28).

Solution It follows immediately that n = 72 and p = 1/3. Therefore, the

random variable Y has a binomial distribution with mean y = np = 24 and variance

0% = np(1—p) = 16. For large sample sizes (besides other restrictions) the binomial

distribution is approximated very well by a normal distribution with the same mean
and variance.
Let X be the random variable of a normal distribution with n(u, 6%), then

P22 <Y <28) ~ P(21.5 < X < 28.5),

where we used the convention of taking 0.5 above and below the limiting discrete
value. On using Eq. (1.38) we find with 4 = 24 and o = 4

28.5 — 215
P2 <Y <28) zN(—“)_N(_“)
o (o2

~ N(1.125) — N(—0.625) = N(1.125) — 1 + N(0.625)
=0.87— 1+ 0.734 = 0.604.

1.10 The Language of Fluid Turbulence

Problem 1.80 Show that the joint covariance is not symmetric in the time lag t,
i.e., that R, () = Ry, (—7).

Solution The joint covariance is given by

Ri(7) = (u@v(t + 7)) = (u(@ = )v()) = (v()u( — 7)) = Ruu(—7).

where we used the new variable ¢ =t + 7.

Problem 1.81 Show that the joint covariance for u and a time derivative of v
satisfies R,;(7) = 0Ry,(—71)/07.

Solution The joint covariance is given by
d a , ,
Ry ={u@®)—v(t+r71))= —(u(t —r)v(t))
at at

O ot — ) = LR
= E(U(I)M(I —‘L'))— a_L_Rvu( 1),

where we used the new variable ¥ = ¢ + 7.
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Problem 1.82 Show that the co-spectrum and quadrature spectrum may be
expressed as integrals

wa(w)=:EglﬁaWRmmr>+-Rmm—rncoxwr)da

1 o0
Quyy(w) = E/o [Ruv(T) — Ry (—7)] sin(wt) dt.

Solution The joint or cross-spectral density of the joint pair of random functions
u and v is given by

1 o0 .
mwzgfmwmmzmmw@mm

—0o0

where the co-spectrum is the real part of the cross-spectral density, Co,,(w) =
Re (Sw(w)), and the quadrature spectrum is the imaginary part, Qu,,(®w) =
Jm (S, (®)). The integral can also be written in the form

o

1 )
Sw(@) = o— | dre” Ru(7)
—0o0

1 00 0

. 1 .
= — dt e"R,, (1) + —/ dt "Ry, (1)
21 0 21 —00

oo

1 iot 1 * —iot
= — dt "Ry (1) + — dte 'Ry (—1)
21 0 21 0

1 o0 . .
—_ d la)‘L'Ru —la)TRu _ ,
=l ML [¢“"Ruv(7) + e o(—=1)]
where we used the substitution 7 = —t in the second step. Bear in mind
that e*®" = cos(wt) + isin(wt), and therefore Re (e*7) = cos(wt) and
Jm (ei"‘”) = =+ sin(w7). Since R, (£7) is a real function it follows that

Couy(®) = Re [Siy ()]

Re I:L /OO dt [eieruv (T) + e_ithuv (_T)]i|
0

2

= L[ (9 [67) Run(r) + 96 [ Run(—1)]
2 0

= L - dt [cos(wT)Ryy (T) + cos(@wT)R,, (—7)]
27 0

= L [ dr (@) + Run(=1)] cos()
27'[0
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and similarly
Quyp (@) = Tm [Si ()]

Jm I:i /00 dt [einRuv (t) + e TR, (—r)]:|
0

2
= L[ e [ [¢] Run(0) + T [ ] R ()]
21 0
1 o0

= — dt [sin(wt)Ryy (t) — sin(wt)R,y (—7)]
2 0

1 o0
= _/ dt [Riy(t) — Ry (—7)] sin(w7).
21 0
Problem 1.83 By introducing the coherence

Co2, + Qu?
Cohy,y(w) = —|Sv s |”

and the phase 6, (w) = arg (S,,) (the argument of S,,), show that the joint or cross
spectral density can be expressed in terms of its magnitude and argument,

Suv(a)) =V |Suu(w)||va(w)| COhuv(w) eiﬁuv(a))'

Solution Any complex number z can be rewritten in a polar form and, by using
Euler’s formula, expressed by

z=a+ib = |z|[cos$ + ising] = |z]e"?,

where the argument ¢ = argz = arctan(b/a). The complex cross spectral density
S, can then be written as

Suv — |Suv|eiargSuU'

The argument of S,,, is given by 6, (w) = arg (S,,). The absolute value is given by

S| = 1Cou(@) + iQuu(@)] = \/Co2, (@) + Qu2, ().
so that

Suv(w) = ISuu(w)IISUU(Cl))| Coh,w(a)) eie"”(w)

where we used the definition of the coherence given above.
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Problem 1.84 Show that if ' = 0u/dx, then ¢,/y = k>

Solution We have

[ Oux) du(x)\ 9’ 02
Ruw _< el el wAUCLCS) Al w8
Introducing the new variable § = x’ — x, we find
ad 35 d d ad BS d d
— — and — =——,
w 85 85 x  ox 85 a&
so that
82
Ryw = ——Ru .
©) =~ Ru(®
The (1D) wavenumber spectrum is given by
bt = o [ Rt =~ [ et D R
w'u/ = e ' = —— e — Ry
21 J_o 2 €2

Using integration by parts twice we find

TR TR Rt _
B k) = K5 /_ RO = Epul®),

using that R,,,(§) = 0 and dR,,,(£§)/0& = 0 for § = *o0.

Problem 1.85 Show that an exponentially decaying covariance
Ru(7) = (u(0)u(z)) = Ce™?"! (1.45)
yields a Lorentz distribution for the power spectral density,

Cy

Su(w) = - m (1.46)

Solution The joint or cross-spectral density of the joint pair of random functions
is given by

L . c (> .
Su(@) = —— dt e Ry (1) = — dr @It
2 J_ 27 oo

(o]
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Covariance

1.4

1.2

1.0

T
-2 -1 0 1 2

Fig. 1.16 Shown is the covariance ( u(7)u(0) ) calculated from Eq. (1.45) fory = 4and C =1

As an example, the covariance is plotted in Fig. 1.16 for y = 4 and C = 1. With
|| =t fort > 0 and |7| = —7 for T < O we split the integral into

C o0 . C 0 )
Suu(a)) = — dr e(tw—)’)f 4+ — dr e(tw‘[-{—y)‘[.
27 Jo 27 J_so

By substituting T = —7 in the second integral we obtain
o0 o
Suu(a)) = £ d‘C e—(—iw+)’)f + £/ d‘C e—(iwr+y)r
27 0 2w 0

C 1 | 1 Cy
= —|— + - =
2r | (miw+y)  (w+7y) 7w+ y?

As an example, the spectral density is plotted in Fig. 1.17 for y = 4 and C = 1.

Problem 1.86 Consider now an additional periodic component to u(z), say u(f) =
v(r) + Ae~™ with (v(r)) = 0 and (v(0)v(r)) = Ce "l Show that

(u(t)u(0)) = Ce 7T 4 A2e7ie0T (1.47)
and
I Cy 2

Sketch the covariance and the power spectral density.
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Spectral Density
0.1

[0

-20 -10 0 10 20

Fig. 1.17 Shown is the spectral density S,,(w) calculated from Eq. (1.46) fory =4and C = 1

Solution For calculating the autocovariance we consider first
u(@u') = vO() + Av(H)e " + Av(f)e ™" 4 A2
By averaging over u(f)u(f') we obtain
(u@u(@)) = (v(D)o(r)) + A2+,
since < Av(f)e™ ™" >= A (v(r)) e~ = 0. By substituting t = # — 7 and by

setting = 0 (because the homogeneous autocovariance depends only on the time
difference ), we find

(M(O)M(‘L’)) = Cg_ylfl +Aze—ia}0r’
where we used (v(0)v(r)) = Ce™”!"l. Shown in Fig.1.18 is the real part of

Eq.(1.47)fory = 4,C = 1,A = 1, and wy = 3. The Fourier transform of the
autocovariance is then given by

Su(w) = o dr ™% (u(0)u(r))
C o0

2 00
= dre@re T 4 124—/ dt @7,
T

2 —00 —00
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Covariance

h s
\

-1

-2

Fig. 1.18 Shown is the covariance ( u(t)u(0) ) calculated from Eq.(1.47) fory =4,C=1,A =
l,and wy = 3

Spectral Density
0.20

0.15

0.10

N

0.05

-5 0 5
Fig. 1.19 Shown is the spectral density S,,,(w) calculated from Eq. (1.48) fory = 4,C=1,A =

l,and wy = 3

The first integral has been evaluated in the previous problem. The second integral
yields the delta function with 276(x) = ffzo exp(ixt)dt, so that

1 C
Su(w) = 4

;a)z—-l-yz +A28(a) — o).

Figure 1.19 shows the spectral density fory =4,C =1,A =1, and wy = 3.



Chapter 2
The Boltzmann Transport Equation

2.1 Derivation of the Boltzmann Transport Equation

The non-relativistic Boltzmann equation is given by

of F Sf
T vV V= (%) .
ot Y f+ m f (St)coll

where r, v, and ¢ are independent variables.

Problem 2.1 Show that the Boltzmann equation (2.1) is invariant with respect to

Galilean transformations.

Solution For simplicity let us consider a Cartesian inertial system K with
(orthogonal) axes x, y, z and an inertial system K’ with axes x’,y’, 7’ that is moving
with speed w in positive x-direction with respect to K. The Galilean transformation

is then given by

/

! =t r () =r — wte, vV = v — we, a

2.1

where e, is the unit vector in x-direction. In particular, for each coordinate we find

=t X)) =x—wt v

I
t = Ux— W
/o ! __
y =Yy Uy, = Uy
/ [
=2 vV, = V.

Z
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Note that r, v, and ¢ are independent variables, while the new coordinate ' depends
on time ¢. More precisely, X' depends on time 7.

Consider now the change in variables, i.e., f (r,v,1) — f (¥ (¢),v’, 7). Thus, we
have the following transformations:

A. Since the new spatial coordinate depends on time we have to rewrite the time
derivative and obtain

o of of o o
FTERGr T A il P L A

where of /or' = Vv and 0r' /0t = —we,.
B. For the gradient of f we find

A 4

Vof = —
! ox dy dz 0x dx dy dy 07 0z
o of | of
= — —_— _— = Vr/ .
o oy "o v

Therefore, V, = V.
C. Similarly we find

af f af 8f v, L af 3v af dv,
avx v, vy 0, 81} avx 81} 31)} v, dv,

_o o o
IR * dvy * o]

Vof =
=V, f.

It follows that V, = V,/. Moreover, since @’ = a we have F' = F.

Substituting the above results, the Boltzmann equation reads

a F/ 8 !
—we, Vuf + ai; + [v + we,]| - Vof + — Vo f = (i)

8t coll
a F LAY
hCl -V, — V==
- 3f+v f+m g (5f)c011

Note that v was replaced by v’ +we,. Therefore, the Boltzmann equation is invariant
under Galilean transformation, i.e., it retains its form.

Problem 2.2 Show that the Boltzmann equation (2.1) transforms into the mixed
phase space coordinate form

0 o (0w i _FN\Y (Y
o Tt ge— (E + (5 + ¢;) o _) 3c; (8;)6,,1, 22

where we used Einstein’s summation convention, i.e., we sum over double indices.
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Solution We rewrite the Boltzmann equation as

o o Fof (5f)
coll

o " or T moy,  \sr

The velocity v of a particle can also be described with respect to the bulk flow
velocity u(r, t), through v = ¢(r, t) +u(r, t), where (v ) = u(r,t) and (c(r,1) ) = 0.
Here, ¢ is the random velocity and sometimes also called the peculiar or thermal
velocity. The random velocity can then be written as ¢(r,f) = v — u(r, t), where
each component can be described by

ci(r, t) =V; —ui(r, t). 2.3)

Note that each component ¢; depends on all spatial coordinates and time.

Sometimes it might be more convenient to express the phase space distribution
finterms of r, ¢, and ¢ instead of r, v, and ¢. This means, that one has to introduce
a mixed phase space, where the configuration space coordinate is inertial, but the
velocity-space coordinate system is an accelerated system because it is tied to the
instantaneous local bulk velocity. (Taken from [1].)

In this case one has to transfer the Boltzmann equation into the new mixed
phase space coordinate system. The pdf f(r, v, r) transforms then into f (r, c, ). By
replacing the independent variable v with the random velocity ¢, one has to take into
account that the new variable ¢(r, ) depends on r and #. Similar to the preceding
problem we have to transform the derivatives accordingly, which is done in the
following.

¢ The time derivative transforms into

of af  df dc;
— = — 4+ ——. 24
ot ot dc¢; Ot 24)
The time derivative of the new variable c;(r,f) can be written as (because it
depends on u, which depends on time ¢)

8c,~ _ aC,' 814,- 8u,~

B ow ot ot
where we used dc;/du; = —1. In this case Eq. (2.4) becomes

af af  Ou; of
a9 ot de (2.5)

» The derivative with respect to the spatial coordinates can be written as

L0 i g

i i . 2.6
ar,- 8r,- v aCj ar,- ( )
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Note that we use a different index for ¢, since each component ¢; depends on all
spatial coordinates r;. By using Eq. (2.3) we find

by _ ety _ iy

Bri N BMj 37‘,‘ a}’i7
where we again used dc;/du; = —1. In this case we find for relation (2.6)

af af af BMJ L of af BM,
vi or; = or; Y% 8c] ar Yo "or; ~ Y% ac; ar,

2.7
Note that we swapped the indices i and j for the velocity v and the random
velocity ¢ in the last term on the right side. We do that, because we want to
summarize the result in terms of df /dc;, and not df /dc;. According to Einstein’s
summation convention, swapping the indices has no influence on the summation.
Substituting v;; by Eq. (2.3) we find

af of du; of
v,arl:(uﬁrc,)a —(uj+c ,)3 %

* Finally, we transform

o oda o
v; = 3 dc; dv;  oc;’

where we used dc;/dv; = 1 according to Eq. (2.3).
By summarizing all transformations we obtain Eq. (2.2).

Problem 2.3 Find the general solution to the Boltzmann equation (2.1) in the
absence of collisions, i.e., (§f/8t)c.on = 0. Derive the general solution for the case
that the force F = 0.

Solution We consider first the force-free case with F = 0 and then the case
where F = const. # 0.

* For simplicity we use the one-dimensional Boltzmann equation

of of

Z +u,— =0

ot T ox
and deduce the three-dimensional case from that result. Note that the function
f depends on the independent variables x and ¢, i.e., f = f(x, ). We solve this
partial differential equation by using the method of characteristics. Therefore,
we parameterize x and ¢ through the parameter s, so that f = f(#(s), x(s)).
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The system of characteristics (system of ordinary differential equations, ODE)
and the initial conditions (for s = 0) are given by

dr(s) _ 1 t(0) = 0 (2.8a)
ds

dx(s) =, x(0) = xo (2.8b)
ds

d,

J;(SS) =0 £(0) = f(x0). (2.8¢)

The solutions to the differential equations (2.8a)—(2.8c) are given by

1(s) =s+c c1=0 ts) =s
x(s) = ves + ¢ ) = Xo = x(s) = ves + xo
fls) =c3 c3 = f(xo) f(s) = f(xo),

and are referred to as the characteristic curve or simply the characteristic. In
particular, we find immediately

s=1
x(1) = vt + xo Xo = X — Uyl

The characteristics are therefore curves which go through the point xj at time
t = 0 into the direction of vy. The solution of the Boltzmann equation with initial
condition f(x, r = 0) = f(xo) can, therefore, be written as

S, 1) = f(xo) = G(x — vy1),

which means that the solution is constant along the characteristic. One can
interpret this solution in the way, that the initial profile f(x) is transported with
velocity v, without changing the form of that profile. Going back to the three-
dimensional case the solution is simply given by

fx.1) = f(xo) = G(x —vi).

 For the (1D) collisionless Boltzmann equation with F = const. # 0 we have
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Here, the function f depends on x, v, and ¢, i.e., f = f(x, vy, ). The system of
characteristics with the initial conditions is given by

o

! 10) =0 (2.92)
ds
dx(s) =, x(0) = x (2.9b)
ds
dv(s) =a, 1:(0) = vy (2.90)
ds
dJ;(SS) =0 f(0) = f(x0, v0), (2.9d)

where a, is the acceleration in x direction. We start by solving the characteristic
equation (2.9¢)

dv,(s) _
ds

(23 - Vi(8) = axs + ¢y - Vx(8) = @xs + Vo,

where we used the initial condition v,(s = 0) = v,. The second differential
equation (2.9b) can then be written as

dx(s)
ds

= Uy = xS + V0,

where we substituted the solution of the first differential equation. The solution
to this differential equation is given by

x(s) = a—zxs2 + V08 + 2 — x(s) = a—zxs2 + V408 + X0,
where we used the above initial condition. Obviously, we also find
ts)=s+c;3 == t(s) = s.
Therefore, the characteristics are
x(t) = a—zxt2 + vyt + X0 - Xo =X — a—zxt2 — Uyot
V(7)) = ayt + vy — Vyo = Uy — dyl. (2.10)

The function f is constant along the characteristic described by Eq. (2.10),

F@v0) = f00.00) = G [ (x= T = var) . (o —aun) |
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We can easily test, that the function G solves the Boltzmann equation. We use
fx v 1) = G(P.0),
where
dﬁzx—%tz—vxot, O = v, — ayt.

We find for the derivatives (for simplicity we abbreviate derivatives as dG/0t =
G, and 0G/0® = Gg):

a

a_f; =Go D 4+ GoO; = Go (—axt — vx) + Go (—ay)
ad

Uxi = Uqu)QDX = Uqu)
ox
a
ax—f = a,Gp®,, = a,Ge.
v,

Adding all results up we find (since —a,t — vy + vy = 0, see Eq. (2.10))

ad ad a
—f+ Uy f+ax_f:Gdb(_axt_vxo+Ux)+G@(_ax+ax):O-
ot ox vy

2.2 The Boltzmann Collision Operator

Problem 2.4 Show that for a # b,

S((x—a)(x—0)) = ﬁ [6(x —a) + 8(x—D)].

Solution For an arbitrary function g(x) with roots! x; and g’(x;) # 0 the delta
function is given by

8(x —x;)

8<g(x>)—2| TR

'A root or zero, x;, of a function g(x) is defined such that g(x;) = 0, i.e., the function vanishes at
Xi.
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For the above function g(x) = (x — a)(x — b) = x*> — ax — bx + ab the roots are
x1 = a and x, = b and the derivative is given by g’(x) = 2x —a — b. We find

8(x—a)+ ;8()(— b)

§ ((x — a)(x — b)) DRa—a—b| |2b —a — b

Problem 2.5 Consider the relative motion of two particles P; and P, moving in
each other’s field of force with position vectors | and r,, and with masses m; and
my, see Fig. 2.1. The particles are subject to the central forces F; and F,, which are
parallel to r = r; — r, and depend, therefore, only on r = |r; — r,|. Starting from
the reduced mass equation of motion in polar coordinates,

.. : - .- aV(r
M (r _ r@z) e, +M <r9 + 2r9) es = —#er, @2.11)
r
Ay
X
Fig. 2.1 Schematic of an electron (with charge eZ;, where Z; = —1) scattering in the Coulomb

field of an ion (with charge eZ,, where Z, > 0 ). The trajectory of the electron is hyperbolic with
eccentricity €
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complete the steps in the derivation of

a9 b P 2V(r)
@y 1 )
r2 Mg?

2.12)

where 0 is the angle of the incoming particle, b is the impact parameter, g is the
constant relative speed, M = mym;/(my +m;) is the relative (or reduced) mass, and
V(r) is the potential energy with V(r = oo) = 0.

Solution We consider first the conservation laws for angular momentum and
total energy. In the second part we derive the expression given by Eq. (2.12).

A. Conservation of Angular Momentum. Here we describe two alternatives. The
first alternative is based on the Lagrangian and the conservation law for angular
momentum is derived by considering the angular component (coordinate) of
the Lagrangian. The second alternative is based on the definition of the angular
momentum.

a. Alternative 1—Equation (2.11) describes the equations of motion in both
directions, r and 6. To verify this equation we start with the Lagrangian,
which is given by

L=T-V,

where T is the kinetic energy and V = V/(r) is the potential energy. Note
that in this particular case (polar coordinates) the kinetic energy T = Mv?/2
consists of a radial and angular component, T = T, + Tj, so that

M, M, Mo, M,
L= ?UV =+ ?UO —V(}’) = E}’ + E}’ 9 — V(}"),
where the radial and angular components of the velocity are given by v, = i
and vp = rf), with v> = v,2 + vﬁ. The equations of motion are then given by

doL oL
dtdg;  0g; B
where the coordinate ¢; = r, 6. Let us consider first the radial component,
where
doL oL . av(r)
adr o U

Note that this corresponds exactly to the radial component in Eq.(2.11).
Similarly we obtain for the angular component

dit?)_g — g—g = M% (rzé) = Mr (r@ + 2}"9) =0, (2.13)
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since dL/00 = 0. For r # 0 we can divide by r. The remaining expression
corresponds to the 6-component in Eq. (2.11). From Eq. (2.13) we can deduce
that

120 = const. = gb,

since its time derivative is zero. However, the latter relation can also be
derived from the conservation law for the angular momentum L, which is
described briefly in the following.

b. Alternative 2—The conservation law for angular momentum L is dL/dt = 0.
With v = v,e, + vgeg and r = re, we find

L=rxp=Mrxv=Mrve xe,+ Mrvge, X eg

= Mr*fe, x eg,

sincee, X e, = 0and vy = r0. Since e, X ey i§ perpendicular to the plane of
the particle motion, we simply write L = mr?6. Since the particle mass M is
a constant we find

dL d . .

i ME (r29) =0 = 0 = const. = gb. (2.14)
Conservation of Total Energy. The conservation law for the total energy can
be derived by using the Hamiltonian,

H=T+V.

With the above considerations we obtain

M M,
> = E5’2 + 3}'292 + V(r). (2.15)
The Hamiltonian H describes the total energy of the system. It can be shown
that the total time derivative of the Hamiltonian equals the partial time derivative
of H,

dH  oH

d ot
Further, if the Hamiltonian does not explicitly depend on time, the total time
derivative vanishes and the total energy is conserved (constant). According to
Eq. (2.15) the Hamiltonian is independent of time, i.e., H /3¢ = 0, and hence
dH
!
dt
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Therefore, the total energy is constant and given by
M . M
5 (P +762) + V() = const. = 242 (2.16)

We have now established that Eq. (2.11) describes the equations of motion for both
the r and 6 direction, and that the angular momentum is conserved. After deriving
the conservation laws for the angular momentum and the total energy we proceed
now with the derivation of Eq. (2.12).

Derivation of Eq. (2.12) We consider two particles P; and P,. When particle P;
approaches particle P, both the radial distance r and angle 6 change with time 7.
Therefore, the time derivative of r is given by

dr dr df dr -
r= —=——-=—0,
dt df dt db

where 6 = df/d. Starting with Eq. (2.16) we substitute 7, multiply by 2, and divide

by M and obtain
dr\* . . 2V(r)
= 92 292 — 2 ,
[(d@) tr Y

where we moved the potential energy V(r) to the right side. Substituting now 62 by
Eq. (2.14) we obtain

r4 g M r?
dr\* _ rt | 2V(r) b?
o) b Mg2  2)°

By inverting and taking the square root, we find

’

ﬂ 2 g*b? _ 2 2V(r) B g*b?
do

s —1/2
o :i:b [ 2V b } . 2.17)

Pl L V7R
The negative root corresponds to an incoming particle since the radial coordinate

decreases with time until reaching the point of closest approach. The positive root
corresponds to an outgoing particle.

Problem 2.6 Consider the scattering of an electron with charge g, = eZ; (where
Z; = —1) in the Coulomb field of an ion of charge g, = eZ, (where Z, > 0),

622 1
E = —=
47'[60 }"2

ér,
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where € is the permittivity of free space.

A. Show that
b2
— =1+ ¢ecos0, (2.18)
}’b()
where the eccentricity is given by
b? |Z122|€2
e= .1+ —; =—. 2.19
5 "7 dmeMg? 19

B. Show that tan 8y = b/by at the point of closest approach!
C. Show that the Coulomb or Rutherford scattering cross section is given by

b% Z1Z262
o= = :
4sin* (£) 8megMg sin® £
Solution

A. The electron experiences the (attractive) force

62Z122 1 _ 62|21Z2|

L (2.20)

F(r) = qE(r) = , = ,
() =2k de 2° deg 12

in the Coulomb field of the ion (see Fig.2.1). Note that Z; and Z, have opposite
signs (attractive force) and therefore the minus sign appears by taking the
absolute value of Z; and Z,. The potential energy at a particular distance r is
then given by

® 222 [ 1 2Z1 20| 1
V(r) = / F(/ydr' = -° 1212 L = 14z ~ @2
p dreg J, 12 dmeg ¥
where we used the fact that the potential energy for r = oo vanishes, i.e.,

V(r = o0) = 0. Since the parameter by is per definition a positive number,
see Eq. (2.19), we find

V() _ b
M=y (2.22)

By substituting Eq. (2.22) into Eq. (2.17) from the previous problem we obtain

=t (1422 -=
"

do b 2
= 3 = . (2.23)
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Note that Eq.(2.17) was derived under a certain configuration in which the
negative root denotes an incoming particle and the positive root denotes an
outgoing particle. Now, according to Fig.2.1 the coordinate system has been
rotated so that the configuration is symmetric and each direction can refer to both
an incoming or outgoing particle. We have to distinguish between the following
two cases:

* a positive root refers to a particle moving into negative y direction
* anegative root refers to a particle moving into positive y direction.

This can easily be understood from Fig.2.1. For a particle that moves in a
negative y direction the angle 6(r) is always increasing (positive sign), while for
a particle moving in a positive y direction the angle 6(r) is always decreasing
(negative sign). The point of closest approach, ry, is given by d6/dr = 0, which
means that the square root of Eq. (2.23) has to be zero,

12 + 2borg — b* = 0. (2.24)

The quadratic equation can easily be solved by

ro = —by £ \/b% + b2. (2.25)

Since, per definition, the radial distance cannot be negative we have to choose

the positive root, ro = —by + /b3 + b?! By rearranging the root we can express
the minimal distance in terms of the eccentricity (2.19),

ro = b()(é — 1) (226)

According to Fig. 2.1 we find that the angle under which the closest approach
occurs is given by 6(ro) = m. (Note that the angle 6 is taken anticlockwise from
the positive x axis, the mathematical correct direction.) By considering a particle
moving into negative y direction (starting from rp) we can derive from Eq. (2.23)
by choosing the positive root

7+6(r) rp b b2 —1/2
/ d@:/z[wz—?—ﬁ} dr'.
P o T r r

With the substitution u = b/r" we find (according to [2], Eq.(2.261))

b/r

b/r

() = — dy——————— = —arcsin | ——2—
b/ro 1+2%°u—u2 1_}_:_‘22)

b/ro
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The denominator in the argument of the arcsin function can be expressed
through the eccentricity,

| B by B by
1+ 2=2 145 = e
TR TR TR

By using the identity arcsiny = /2 — arccos(y) we find

. bil/l —1 b/r biu —1 - b/r
0(r) = —arcsin [ 2—— = |arccos [ 2— | — = .
€ € 2
b/ro b/ry

The angle 6 is then given by

» P
bor boro
0(r) = arccos | ——— | —arccos | ——— | .
€ €

Let us consider now the last term on the right side. More specifically, we want
to calculate the argument of the arccos function. Therefore, we substitute r (see
Eq.2.26) and we find

ool b? I @-1 1 é-1 (e=1 _
€-6 (¢

boroe_e:b%e(s—l)_e ee—1) €

L,

where we used b*/b3 = € — 1 in the second step, see also Eq.(2.19). Since
arccos(1) = 0 we find immediately

0(r) = arccos [é (%20 - 1)} ,

b2
— =1+ €cosh. (2.27)
}’b()

which leads to

. From Fig.2.1 we can deduce that for r — oo the angle § — 7 £ 6. Note

that this is valid for both, a particle moving in positive and negative y-direction.
Letting » — oo in Eq. (2.27) we find that

1
0 =14 ecos(r % ). = cos(6y) = p
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since cos(mr £ x) = — cos(x). It is an easy matter to show then that
V1 —=cos? 8, b
tan(fp) = ————— = Ve2 - 1= —.
cos 6y 0

C. The cross section is defined by

(2.28)

~ siny ‘a
where y is the scattering angle (i.e., the angle between the two asymptotes,

which describe an incoming/outgoing particle). We know that the point of
closest approach is defined by the angle 6§, with (compare with Fig. 2.1)

b
tan 90 = b_ and 90 =
0

I
NSRS

By combining both equations we obtain

(2.29)

Inserting the last two equations in Eq. (2.28) we obtain for the cross section

B b_%tan (2 -4%) 1 (230)
2 sing cos?(Z 1) )
272
By using tan x = sinx/ cosx and
TN (X
cos (— - 5) = s1n(2)
(5-2)==(5)
sin(—— %) =cos(=
2 2 2
sin y = 2sin (%) cos (%) (2.31)
we find the Rutherford cross section
1
o =20 (2.32)

4 sin* ()
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2.3 The Boltzmann Equation and the Fluid Equations

The equations describing the conservation of mass, momentum and energy
are

on on d
5 TV ==+ Z a—Xi(nui) =0 (2.33)

au, Z ,au’ ==Y % (2.34)
j ]

d u2 2
()] e 2) ]
(2.35)

The equations for conservation of mass and energy are scalars; the equation
for conservation of momentum describes the i-th component of that vector.
The Maxwell-Boltzmann distribution is given by

3/2 2
) exp [—m%] , (2.36)

fxv,0=n (2nkBT

where kg is Boltzmann’s constant, u, n, and T are the bulk velocity, number
density, and temperature of the gas, respectively.

Problem 2.7 By using the conservation equations for mass, momentum and energy,
derive the evolution equation for p; assuming the flow is smooth, i.e., the flow has
no discontinuities like shock waves or contact discontinuities.

Solution The idea is as follows: To derive an evolution equation for the pressure
tensor we start from the equation for conservation of energy (2.35) and transform
that equation in such a way that the conservation of mass and momentum can be
used for simplification. By expanding Eq. (2.35) we obtain

One  m onu® d(nu;e)
LT I TR D v

i

Lm Z 8(nu u?) Z Z aujpll % =0. (2.37)
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Here we used the fact that the mass m is constant, i.e., independent of time and
space coordinates. Consider now the second and fourth term in that equation. By
expanding we obtain

m [ dnu? d(nu;u?)
5( T A

m [ Ou? u?

where we used the continuity equation (2.33) for the summation of the first and
third term in the second line. By using u? = u)zc + ui + u? = Zj uj? for the partial
derivatives with respect to ¢ and x; and by pulling out the number density n we can
simplify Eq. (2.38) to obtain

Inu? () 9
g( eyt ):nm 0 au,+zzuu,ax

l

We change now the indices, i.e., i <> j. The change of indices has no influence on
the summation. We then pull out the summation over index i multiplied by u; and
obtain

onu? a( ) ou; du;
S N R
_ Iy
__ZZ 3xjj

where we used the equation of momentum conservation (2.34). We substitute this
result back into Eq. (2.37) and obtain

8ante m a(nu e) Z Z au,pl, Z Z BPU Z gzz

(2.39)
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Consider now the third term

dup; o, du;
DILTIS B
_ZZ ‘31%/ +ZZ Pig, iy (2.40)

Note that we changed the summation index in the first term of the last line; this
has no influence on the result. We also used the fact that the pressure tensor is
symmetric, i.e., p; = pj;, which can be seen from the definition of the pressure
tensor (we refer to [5] for further details). With this result Eq.(2.39) can be
simplified and we obtain

m% +mZ a(n“ 2 sza % =0. (2.41)

The second term can be described by

m Xl: 3(1;:[;6‘) =m Z ul% +m : neg—z (2.42)
giving
d ] 0
m?—i—m u; ne—}—mZne——i—ZZp,]a q —O.

By multiplying the last equation by 2 and substitute 2mne = Zi Djj we obtain

0 0
Z e ZZ 'p”+ZZP"a
+zzzp,,a”’ Zaq’ = 0. (2.43)

This equation can be interpreted as the evolution equation for the pressure tensor.

Problem 2.8 Use the Maxwell-Boltzmann distribution (2.36) to show that the
definitions for (A) the number density n, (B) the bulk velocity #, (C) the temperature
T, and (D) the pressure tensor p; do indeed yield these quantities, and that the
pressure tensor can be expressed as p; = p(x, £)d;;. Show too that (E) the heat flux
q vanishes.



2.3 The Boltzmann Equation and the Fluid Equations 95

Solution The Maxwell-Boltzmann distribution is given by Eq.(2.36). In all
following calculations we will make use of

o0
/ e Pdy =0  forx=1,3,5,7,..., (2.44)

(o]

since the Maxwell-Boltzmann distribution satisfies this relation for the expected
value E [X"]. For more details see also Problem 2.12 later in this chapter, where the
expected values are calculated from the moment-generating function.

A. The number density is defined as
n= /f(x, v, 1)d’v.

With the substitution ¢ = v —u and ¢ = ¢} + ¢ + ¢ we find

/ v =n (57) / exp ["”(vz;;)z} o

m \3/2 mc? 3
_n(27tkT) /exp [—ﬁ}d c=n.

B. The bulk velocity is defined by

nu = /vf(x, v, d>v.
Consider the i-th component (i.e., nu;) for which we have

3/2 N2
/v‘f(x’v’t)d% = (5r7) /vieXp [_m(vzk;) }d%

By using again the substitution ¢; = v; — u; we find

/vJ(x,v,t)d% =n (2 kT 3/2/(6, + u;) exp [—m} d’c

m \3/2 m 3 me? .
=n <_27[kT) |:/ Ci €Xp [_ﬁ} d’c + / u; EXp I:—m_'i| d i|

The first integral yields zero (see Eq.(2.44)) and the second integral can be
solved with the help of part A. We find

3/2 2
/ vif (x, v, Nd*v = nu; (h%) /exp [—%} d*c = nu;.
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C. The temperature 7T is defined by

3
EnkT = %/(v —u)’f(x,v,)d’v.

Again, by using ¢ = v — u we find

%/(u —u)*f(x,v,)d*v

m \3/21 5 me? 3
L Sy
m(27tkT) 2/c eXp[ 2kT:| ¢

1 m \32_ 732 (2kT\?
— Znm (—) 3T (2
2 \2xkT 2 \m

3
—nkT,
2

where the integration yields (3/2)7%/2 (2kT /m)° /2. The factor 3 originates from
the summation of ¢* = ¢} + ¢} + ¢2.
D. The pressure tensor is given by

R ErE—

With the substitution ¢; = v; — u; we obtain

m \3/2 me? 3
pij = nm (anT) /cicj exp [—m{| d’c.

With d3c = dcidcidcy and 2= ciz + Cj2 + c% we find that for i # j the pressure
tensor is zero (see part B). The integral only contributes for i = j and we have

3/2 2
pii = nm (L) /clz exp M Be
27 kT 2kT

m 32 732 (2kT\*?
(i) " (4
2rkT 2 (m)

= nkT.

The pressure tensor can therefore be written as p; = pé;;, where p = nkT for
ideal gases.
E. The i-th component of the heat flux vector is defined by

Gi=" / (Vi — u) (v — ).
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Substitute again ¢ = v — u and we obtain

m \32m 2 mc? 3
i=n(—)"" 2 I e =0,
a=n (27tkT) 2 / o exp [ kT:| ¢

The integral yields zero since we have integrals of the form (2.44) in each term.
Problem 2.9 Using the above results, derive the Euler equations.

Solution The Euler equations result from assuming that
pij = p(x, )8 and qi =0,

where p(x, 1) is the scalar pressure. For the conservation of momentum we find from
Eq. (2.34) for the i-th component

814, 814, ap ap
mn +Z "o | T T 2% T oy

or written as a vector
Ju
mn (5 +u- Vu) = —Vp.

For the energy conservation we use Eq. (2.43) and Z,’ pjj = 3p and find

+3Zu,—+3 Z
+3Z : +3 Za—+ pZ =

If we divide by 3 and write the summations with the help of vectors we eventually
find

op 5
— Y —pV.-u=0.
Bt+u p+3p u

Together with the continuity equation (2.33) we find the Euler equations,

% LV () = 0 (2.45)
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mn (% +u- Vu) =—-Vp (2.45b)

ap

5
o 4+u-Vp+ ng cu =0. (2.45¢)

Problem 2.10 Linearize the 1D Euler equations about the constant state ¥y =
(no, uo, po), i.e., consider perturbations §¥ such that ¥ = ¥ + §¥. Derive a linear
wave equation in terms of a single variable, say dn. Seek solutions to the linear wave
equation in the form exp [i(w? — kx)], and show that the Euler equations admit a non-
propagating zero-frequency wave and forward and backward propagating acoustic
modes satisfying the dispersion relation o’ = w — ugk = +Csk, where C is a
suitably defined sound speed.

Solution The 1D Euler equations are given by

on 0
ou, du,\ _ Op
o ( s ”’f—ax) = (2.46b)
9 P 5 du
PPy 2,y (2.46¢)

ot ax 37 ox

We linearize the 1D Euler equations about the constant state ¥y = (no, uop, po), i.e.,
we consider a small perturbation so that ¥ = ¥, + §¥. The number density n, the
velocity u,, and the pressure p are then given by

n=mny+én Uy = uy + du p = po+ 6p.
We substitute these equations into the Euler equations and obtain

daén adn dSu

o + uo—ax + I’lo—ax =0 (2.472)
odu odu adp
mnoﬁ + mnouog = _W (247b)
adp ddp 5 0ddu
Zpg— = 0. 2.47
o "M T3 (2.47¢)

Note that we neglected terms of order §¥2 and §Wds¥/dt or W dSW/dx and that
the derivatives of a constant are zero.

Alternative 1 ~We assume now that the solutions of the differential equations have
the form §¥ = §¥ exp [i(wt — kx)], where ¥ = 4n, du, dp, i.e.,

on = 5noei(wr—kx) Su = 5u0€i(wt—kx) §p = 8poei(wt—kx)'
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For the partial derivatives with respect to time ¢ and space coordinate x we find
in general

14 14
—— = iwd¥ — = —ikéV¥.
ot ox
The linearized Euler equations can then be written as
iwén — tkugén — iknodu = 0 (w — upk) n — knoéu = 0

k
mnpiwdu — ikmnouodu = ikép = (w0 —upk) Su— —38p =0
mno
. . ) 5
iwép — ikugdp — zk§p05u =0 (w — upk) §p — k§p05u =0.

By using @’ = @ — upk we introduce the matrix A and the vector §¥,

o' —ngk 0 én
A=|0 o —& W =|68ul.
0 —gpok ' 3p

so that the set of equations can be written as
A- 5% =0.

The trivial solution is, of course, §% = 0. Non-trivial solutions are given by
the eigenvalues of the matrix A. Therefore, we determine first the characteristic
equation (also called the characteristic polynomial), detA = 0,

5k
detA = o' - [a)’2 - —ﬂ:| =0.
3 mny

The eigenvalues are given by the zeros of the characteristic equation, hence,

ShT,

o] =0 wy; =+ 3

’

where we used po = nokpT (ideal gas law). The sound speed is defined as C; =
v vkgT/m with the adiabatic index y (which is y = 5/3 for ideal gases). We
find

w; =0 wj 3 = +Cik.

The Euler equations, indeed, admit a zero frequency (non-propagating) wave,
and forward and backward propagating acoustic modes with sound speed C;.
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Alternative 2 Our starting point are again the linearized 1D Euler equa-
tions (2.47a)—(2.47¢). By introducing the convective derivative

p_d,
Dt o Mo

we may write the linearized 1D Euler equations as

(2.48)

Dén n odu 0
— n —
Dt 0" ox
Déu 1 dép
R
Dt nom 0x
Dép 5 dbu
S T
D T37%

This is a set of three differential equations with three unknowns (dn, Su, and 8p).
We want to solve that set of differential equation for dp. Therefore, we take the
convective derivative of the first and third equation, and the partial derivative with
respect to x of the second equation resulting in

D?*8n d Déu
D M5 Dr
d Déu 1 9%8p —0
ox Dt nom 0x2
D*8p 5 0 Déu
b2 3% Dr

We substitute now the term with du in the second and third equation by using the
first equation (continuity equation). We obtain a set of two differential equations,

D*n 1 9%p —0
D2 m x>
D*8p  5po D*n _

Dr? 3ng Df?

Consider now an ideal gas with pg = nokgT. By substituting the term with dn in
the second equation we obtain
D*8p  5kgT 3%*8p _ D?*8p ,0%8p —0
D 3 m x>  Di? S o2

where we defined the sound speed C; as above. This equation is a wave equation.
By using the above definition of the convective derivative we obtain

DZ 32 32 ) 32
== ot —,
D a2 T Mhax T2
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so that

928p 9%8p 9%8p 928p
2 2 —C? =0. 2.49
g TGy T TS0 (2.49)

We seek now solutions of the form ép = ép exp [i(wt — kx)]. We obviously find

0%8p ) 0%8p 0%8p
—_— = 8 —_— = —k28 = k8 s
! o P aax
so that Eq. (2.49) becomes
(—w* + 2upwk — u3k*) + Ck* = 0.

The term in brackets can be written as (—»? + 2ugwk — ugk?) = —(w — uok)* so
that by using @’ as defined above

0" = (0 — uok)* = C?k? == o' = o —upk = £Ck.

Note that ’ is the frequency of the wave seen by an observer who is co-moving
with the background flow at speed uy, and w is the frequency seen by an observer
outside (not co-moving) with the background flow.

A wave (seen from an observer outside the co-moving frame) that travels with
the same velocity as the background medium uy and with dispersion @ = upk
has a zero frequency in the co-moving frame

a)’ = M()k— M()k = O,

and is therefore, non-propagating in that co-moving frame.

2.4 The Chapman-Enskog Expansion

We consider an expansion of the distribution function f about the equilibrium
or Maxwellian distribution f; in the form

f=fitei+efp+...,

(continued)
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where f1, f>, ... are successive corrections to fy. We consider also the force-
free Boltzmann equation,

of of

- T Uko— = —v(f —Jfo),

o o, (f —fo)

where the collision operator on the right side is approximated by a scattering
frequency v. By using the above expansion for the distribution function we
find

LRI R (2.50)
Xk

Since fj is the Maxwell-Boltzmann distribution we can evaluate the left side
and find an expression for the first correction f;.

Problem 2.11 Complete the details for the derivation of the expressions above for
dfo/ 0t and dfy/dx;. Use these results to complete the derivation of the expression

for fi.

Solution The first correction f; to the Maxwell-Boltzmann distribution f can be
calculated by using Eq. (2.50), where the Maxwell-Boltzmann distribution (2.36) is
given by

f—n( m )y:x[—ﬂﬂiﬁﬁ} 2.51)
Jo =\ kT P 2sT | ‘

Note that the density n, velocity u, and temperature T are functions of time and
space, so that n = n(x,t), u = u(x,t), and T = T(x, t). By introducing these new
variables we have to transform the derivatives according to the new time and spatial
dependencies of the new variables (see also Problems 2.1 and 2.2).

The idea is as follows: First, we derive the transformations for the time derivative
and the spatial derivative, respectively. Finally, these expressions will be substituted
back into Eq. (2.50), which will lead to an expression for the first correction in terms

of fo.
A. The time derivative transforms as follows

oy _ foon  dfpou  ofp oT

o oo T amar ToT o (2.52)
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where (using the definition of the Maxwell-Boltzmann distribution)

)

£ - f;O (2.53a)
ofo  m(v—u)

o =p, (2.53b)
ofy 31 m(v —u)* —u)’1

ar = 2T T T (2:53¢)

All derivatives can be expressed in terms of the Maxwell-Boltzmann distribution
fo- By substituting these results into Eq. (2.52) we obtain

Bfo —f 13n m(v—u) ou 3107 m(v—u)*10T
e T ket a0 2T 2T T 0t
By substituting ¢ = v — u and by using a component description we find for the
i-th component

o 0

n ot keT or 2T 0 kT T 0t

dfo |:1 on mci d; 31T mc? 1 3T:| (2.54)

Equation (2.54) includes time derivatives of the density n, velocity u;, and
temperature 7. To replace these time derivatives we use the Euler equa-
tions (2.45a)—(2.45¢) (with Einstein’s summation convention),

0
a—r; + —(nuk) =0

du; n ou; ap
mn|\— +u— ) =——
ar | Foxg e

ap 8p 5 Juy

— -p— = 0.
o "oy T3,
With p = nkgT we obtain

lon  Oux  w On

ndt  Oxy n oxg
ou; du; kgT on kg oT

e AL s L Al

ot k8xk mn dx; m 0x;

10T _ 2 auk U oT

TE - 38xk T8xk'
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For the last equation we used the continuity equation to eliminate the terms
proportional to dn/dt and dn/dx; By substituting these results back into
Eq. (2.54) we obtain

1 9fp u, on mcl du; c¢;on ¢ 0T

f_og oo axk kBT oxy ndx; T ox;
3u, 0T 2 mc? 3uk me* w, 0T

2T dx,  32ksT dx;,  2kgT T oxi

(2.55)

Equation (2.55) is just the transformation of the time derivative in Eq. (2.50).
B. We also need to calculate the spatial derivatives in Eq. (2.50), which is done
similarly to the time derivative (2.52) and we obtain

oo o o du 3o
dx,  On dxp  Owdxy OT Oxx
_ [1 on  m—u)du 3107 mv—u)’l 3T:|

n axk kBT axk 2T axk 2kBT ?8_xk

where we used Eqgs. (2.532)—(2.53c¢) to replace the derivatives of the Maxwell-
Boltzmann distribution, as before. By multiplying this equation with v; and
dividing by f, we obtain

ve Ofo vk On m du; 31 dT met 1 9T

S i — e 4 —— — v —. 2.56
f() 8xk n 8xk + kBTC vk 8xk 2 Tvk 8xk + ZkBT Tvkaxk ( )

We have also used ¢ = v — u and substituted vy = ¢ + ux.
Now we substitute the results (2.55) and (2.56) back into Eq. (2.50) and obtain the

somewhat lengthy expression

f u, on mc, du; c¢;on ¢ 0T 3u, dT

—Y) = — — _— -

fo n 8xk kBT oxy nox; T Ox; + 578_)0(

2 mc? 3uk mc? ug oT ¢+ u; on
3 2kBT axk 2kBT T 8xk n 8xk

mc? 1

2kgT T

m ou; 31
+ —cilc +Mk)a—xk —5rlatu )— + =la+ k)—-

kgT

Note that ¢;0/0dx; = c,d/0xy, since we use Einstein’s summation convention. After
some simplifications we obtain

fl 2 mc? Quy m du; 51 0T mer 1 9T

e T 3Ty | kT o 2T %0n | 2T T o
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From this equation it follows that

m 1, ou; mc? 5\ 19T
— = o iCk — — 8i —_— - =] =].
vh=ho [kBT (C T3 ") oy (2kBT 2) Taxk:|
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(2.57)

The first correction can be described through the Maxwell-Boltzmann distribution

function.

Problem 2.12 Consider the 1D pdf

flx) = \/ge_ﬁ"z for — 0o < x < o0.

(2.58)

(A) Show that the moment-generating function is given by M(t) = exp (1>/48). (B)
Derive the expectations E(X), E(X?), E(X?), E(X*), E(X°) and E(X®).(C) Hence

show that one obtains the integrals

-

o0 ﬂ 2
W - xze dx
3 o0
—00
15 *
8[3—\7//§ = / e P dx.
—0oo

Solution

A. The moment-generating function is defined by Eq. (1.15), so that

o= onne e

Consider the exponent. With the transformation

5 B t\ 2, P
—,Bx-i—tx——ﬂ(x—ﬁ) @——ﬂy +ﬁ’

where we substituted y = x — ¢/2, we obtain

_ ,3 t2 e8] gy _ l‘2
o= (Eoa(5) [~ =en(5)

since the integration yields /7 /8.

(2.59a)

(2.59b)

(2.59¢)
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B. The n-th moment (or the n-th derivative) of the moment-generating function is

given by
Mn(t) ﬂ /00 xn —ﬁxz-i-rxd d" ex [2
=4/ = e X = — — 1.
T J s drt P 48

Since E(X") = M"(t = 0) we find with M(0) = 1 the following results

M (1) = #M(r} E(X) =0
w0 = (415 + 55 ) MO BOC) = 5
M (5) G# + é;—Z) M) EXY) =0
vo-Gho g an-2)
M>(1) = (18_5f%+ 2;—34+3i2;—55)M(t) EX?) =0

M) — 15 1 +45t2+15t4+ 1 £ e E(Xﬁ)_ISI
A8 B 1684 3285 ' 64 B0 8 B3

C. With E(X") = M"(¢t = 0) it follows immediately that

E(X") = \/E / " e gy
T J-co
= / " e PR gy = \/gE(x"). (2.60)

By combining the expectations derived in part (B) with Eq. (2.60) we find the
equations given by (2.59a)—(2.59c¢).

Problem 2.13 Show that the Chapman-Enskog expression for f; satisfies the
constraints

/fld% =0 /cfld3v =0 /czfld?’v =0 (2.61)

Solution The first order correction term of the Chapman-Enskog expansion is
given by

_ fo[ m ou; mc® 5\ 10T
fi=—— |:— (C,Ck —C 8,1() e + ¢k (m 5 ?a—xk ) (2.62)
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with the scattering frequency v and the Maxwell-Boltzmann distribution f; (com-
pare with Eq.(2.57)). For the sake of brevity we write the Maxwell-Boltzmann
distribution function as

P B 3/2 _ge
v=n = e , (2.63)

where § = m/(2kT) and ¢ = v — u. This has the advantage that we can use the
results of the previous Problem 2.12; compare with the probability density function
given by Eq. (2.51). With @*v = d>c the constraints can also be written as

0= / cfid’c (2.64)
1 m Ou; 1, 10T met 5
v /c fo [kBT o (C T3 ") T ox " (2kT 2)} ¢
where ¢ = 0,1,2 for the zeroth, first, and second constraint respectively. In

Eq. (2.64) the constants kg, T,m and the partial derivatives with respect to x; are
independent of dc and, thus, the integral operates only on the terms in rounded
brackets (which include the velocity c). Each of the integrals on the right hand side
has to vanish independently, therefore, we consider both integrals separately. For
simplicity we substitute fy by Eq. (2.63) and neglect all constant factors and obtain
the following two conditions

1
A: / e P (Cick — §c25,4,() dc=0 (2.65a)
o —pc? 2 5 3
B: c*e P e | Be —5 d’c=0. (2.65b)

Basically, the constraints (2.61) reduce to the two conditions A and B.
First Constraint: « = 0
A. In this case the expression given by Eq. (2.65a) becomes

o0 2 1
/ e P (cick — gcz&k) dc. (2.66)

o0

Here we have to distinguish between the two cases i = k and i # k.

Casei = k: We find for Eq. (2.66)

T T vt [ Loy 20 2
/ / / e PaTGTe | ¢ _§(ci +¢; + ¢;) | deidcjdcy.
—00 J —00 J—00
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Note that the integral of each component within the squared brackets yields

the same result, i.e., the integrals with c? and ¢ yield the same result as 7,

hence we set (¢ + cj2 + ¢?) = 3¢? and obtain

© o o — .2+ .2+ 2 2 2
/ / / e Pleiteten [Ci — ci]dcidcjdck =0.
—00 J —0O0 —00

Case i # k: In this case Eq. (2.66) becomes

o0 o0 o0 2+ 2+ )
/ / / e Pliteta) cicxdeidejdey, = 0.
—00 —00 —00 ’

The result is zero due to odd orders of ¢ under the integral, compare with

Eq.(2.44).
B. Let us now consider the second integral given by Eq. (2.65b). For « = 0 we
obtain
0 2 5
/ e P |:,362 - -} dc. (2.67)
—o0 2

By expanding ¢? = ci2 + cj2 + c% we find

CATAT —pria 2 2 32
/ / / e Pt [,B(Ckci + crei + ) — Ecki| dejdcidey = 0.
—00 J—00 J —00

This integral is zero, where we used again Eq. (2.44).
Obviously, the first constraint is fulfilled.

Second Constraint: « = 1 The result of this constraint is a vector, but for
convenience we consider only the j-th component of the vector c.

A. For the first integral we find

1
/e‘_ﬂcz (CiCjCk - ngCZSik) d’c. (2.68)

Here we have to distinguish the following cases:

Casei =k =j: In this case Eq. (2.68) becomes

o oo [ 2,202 1
/ / / e Plateta I:cl3 - gci(ci2 +cf + cﬁl):| dcidcde,, = 0,
—00 J —00 J —00
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where we used the indices i, [, m to avoid confusion with the indices j, k. One
can see immediately that the integral vanishes according to Eq. (2.44), since
we have always an odd order of ¢; under the integral.

Case i = k # j: In this case Eq.(2.68) becomes

CAT T bt [ 2 L2 n 20 2
/ / / e PTG etep — gcj(cl- + ¢j +¢;) | deidejde; = 0,
—00 J—00 J —00

which vanishes according to Eq. (2.44), since we have always odd orders of
¢j under the integral.
Case i # k = j: In this case Eq.(2.68) becomes

_ 2 24 .2
/@ B(ci+c; +Cl)CiCj2 dCidedCI =0,

which vanishes also according to Eq. (2.44).
Casei # k #jandi # j: In this last case, where all indices are mutually
distinct, Eq. (2.68) becomes

— 24242
/e PE+G+0 cicier deidedey = 0,

which vanishes also, because we have an odd order of ¢ for all indices i, j,
and k.

B. For the second integral we obtain (by using the j-th component of the vector)

5
/ e (ﬁCiCkcz - ECiCk) d’c, (2.69)

where we pulled ¢; and ¢ into the brackets. We have to distinguish between the
cases j = kand j # k.

Casej = k: In this case Eq. (2.69) becomes

R IR (T RUE e 3 2, 2, 2\ 2o
/ / / e T B(ci + ¢ + ¢)c; — ¢ | dejdeiden.
—o00 J—00 J—00 ’ ’ 2 !

The first part of that integral becomes then

C AT —prdrdy 4, 20 22 572
ﬁ/_oo/_w/_ooe 7T () + cjep + i ey)dedede, = YV R
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Note that while evaluating the integral we can set cj 2 4+ cjzc2 = ch Cz , since
both integrals provide the same result. The second part of the integral yields

5
__/ / / C e ﬁ(C +C/ +Lm)dc dC]de = ;5/2

By adding up both parts we obtain

: 5
/e_ﬁ‘z (,BQjCkCZ - Ecjck) d*c = 0.

Casej # k: In this case Eq. (2.69) becomes

[ Y T FUE U 2, .2, 2 >
/ / / e Pleteptep) |:,3(cj + ¢ + cp)cjer — Ecjcki| dcidcydcy.
—00 J —0O0 —00

Obviously, this integral yields zero according to Eq.(2.44), since we have
odd orders of ¢; and ¢ under the integral.

Obviously, the second constraint is also fulfilled.
Third Constraint: « = 2

A. In this case Eq. (2.65a) becomes

1
/ —Be? (c cick — 36 S,k) &, (2.70)

where we have pulled the ¢? into the brackets. Here we have to distinguish
between the cases i = k and i # k.

Case i = k: In this case Eq. (2.70) becomes

. 1
/e_ﬁ‘z (Czci2 — §C4) dc= A + As.

Let us consider both terms separately and we obtain for the first part

o0 o0 o0 2+ 2+ 2 4
A= / / / e Pleita C'”)(ci + ¢ Cl + ¢ cm)dcldcldcm
—00 —00 —00

Note that the integration of the terms containing c and c ¢ yield the same
result. Therefore we simplify the equation and obtam for the first term

[T percidy, 4 29
Ay =/ / / e Pleite cm)(ci + 2c;icy)deideideyy,.
—00 —00 —00
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For the second part of the integral we consider first the expression ¢* which
can be written as
(ci2 + cl2 + Cfn)2 = C? + C? + cﬁl + ZCizcl2 + ZC%Cfn + ZCIZC,Zn
= 3¢} + 6cic],
where we used the fact, that the integrations over ¢}, ¢}, and ¢, yield the same

result as well as the integrations over c?c?, c7c2, and c7c%. The second part
of the integral can then be written as

i i“m’

Rl e SO SRS B 22
Ay = _/ / / e B(c; +61+Lm)—(3ci + 6Ci (o )dC,'dC[de.
—00 J—00 J—00 3

Since A} = —A; we find that A} + A, = 0 and therefore the integral
vanishes for i = k.
Case i # k: In this case Eq. (2.70) becomes

o0 o0 o0 > > )
/ / / e B +Ck+cl)(ci2 + c,% + c,z)cick dcidcidce; = 0.
—00 —00 —00

This integral vanishes also, since we have odd orders of ¢; and ¢; under the
integral.

With both results we find

1
/cze_ﬁc2 (cick — gcz&k) dc=0.

B. For the second integral we find

/e_ﬂczck (,3C4 — gcz) dc=0,

where we pulled ¢? into the brackets. One can see immediately that this integral
vanishes, since we have always an odd order of ¢, under the integral.

By adding both results up we find that the third constraint is also fullfilled. All
results show that the first correction fi to the Maxwell-Boltzmann distribution f;
indeed satisfies the above mentioned conditions (2.61).

Problem 2.14 Show that the terms o« (1/7)d7/0x; in the pressure term of
Eq. (2.57) vanish identically.

Solution The first correction to the pressure term is given by

pilj = m/cicjf1d3c.



112 2 The Boltzmann Transport Equation

According to Eq.(2.57) the term of f; that is proportional to o< (1/7)dT/0dx; is

given by
~ 10T
— 2_ )=
h= ('B ) T ox;

Let’s consider both terms separately. Since the temperature and the scattering
frequency are independent of ¢ we have

o0
A / cicicrc?e P dPe = 0 (2.71a)
—0o0
o0 2
B: / ciciere P dPe = 0, (2.71b)
—00

where we used the Maxwell-Boltzmann distribution function fy from Eq. (2.63). We
consider first the integral of Eq. (2.71a).

A. Here we consider Eq.(2.71a). We have to distinguish between the following
cases: (a) i = j = k, (b) i = j # k (it is an easy matter to show thati # j = k
yields the same results) and (¢) i # j # k and i # k.

Casei =j = k: Inthis case Eq.(2.71a) becomes

o0 oo o0 5 5 2
/ / / ¢} (e + ¢} + e Pleitatad dedede,, = 0.
—00 J—00 v —00

This integral vanishes, since we have an odd order of ¢; under the integral in
each term, see Eq. (2.44).
Casei # j = k: In this case Eq. (2.71a) becomes

o0 o0 o0 2+ 2+ )
/ / / c,cf(ci2 + cf + clz)e_ﬂ ci+e Cl’dcidcjdc,.
—00 —00 —00

As before we have an odd order of ¢; under the integral in each term.
Therefore, the integral vanishes.
Casei # j # kand i # k: In this case Eq. (2.71a) becomes

o0 o0 o0 2 2 2
/ / / cicjck(ci2 + cf + C,%)e_ﬂ(‘f *g +‘k)dcidcjdck.
—00 —00 —00

This integral vanishes also, since we have odd orders of c¢;, ¢;, and ¢; under
the integral in each term.
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B. For the second integral of Eq.(2.71b) we have to distinguish the same three
cases:

Casei =j = k: Inthis case Eq.(2.71b) becomes

o0 o0 o0 5 5 2
/ / / C?e_ﬁ ita+a) de.dede,, = 0,
—00 J—00 J—0O0

since we have an odd order of ¢; under the integral.
Casei # j = k: In this case Eq. (2.71b) becomes

o0 o0 o0 ) ) )
/ / / c,-cfe_ﬂ (eitejter) dcidcidcy,
—00 —00 —00

which will also vanish due to odd orders of ¢; under the integral.
Casei # j # kand i # k: In this case Eq. (2.71a) becomes

o0 o0 o0 5 5 5
/ / / cicjcke_ﬁ(ci *q +Ck)dcidcjdck,
—00 —00 —00

which also vanishes due to odd orders of ¢ under the integral.

By combining the results from part A and B we find indeed that the terms
proportional to (1/7)dT/0x; in the pressure term vanish identically.

Problem 2.15 Show that the heat flux vector is given by

oT 5 nk*T
qi=—A— with A=201
ox; 2 mv

Solution The heat flux vector can be calculated by

m o) 3
L= — Cfide,
g = /C chid’c
with the first order correctionfl given by Eq (262), and the Maxwell-Boltzmann

distribution function f; given by Eq. (2.63), with § = m/(2kT) and ¢ = v — u.
Again, the integral operates only on the terms in rounded brackets

oomym o L2 e
=" {kT /foc’c (C’Ck 3¢ S’k) ™

5 10T
2 2 2\ 5 Lol
—i—/c,cfock (,BC 2)d CTBxk}'

It can easily be seen that the first integral is

1
/foCiCZ (CjCk - §C28jk) dc=0,



114 2 The Boltzmann Transport Equation

since we find in each term odd orders of c, see Eq. (2.44). The heat flux is therefore,
given by

m 10T

5
26 [ g2 3
l-——___ l _—— d .
1 2v T Oxg cckcfo( ¢ 2) ¢

As before, for i # k this integral is zero, therefore we consider only the case i = k

and obtain
ﬁS/Zmlanzz—ﬁ 3
i =—-n|— ¢ d’c,
a=—n(8) gy [ e (b2 3) o

where we substituted f; by Eq. (2.63). Let us consider the first term of the sum. We
obtain

32 10T 351 m T
n é m /C2C4 —B P = ——ﬂ— (2.72)
EL1 2v Tax, 16,32 vT 0x;

For the second term we find

n§ B 3/2mlaT/C22_/36d3 ZSLEB_T 2.73)
2\ nm 2v T 9x; 16,321)T8x,<' '

By subtracting Eq. (2.73) from Eq. (2.72) we find for the heat flux

351 mdT _ 251 moT __ 51 mdT __SmcT T
i: —-_N— - —Nn —--\N—— — =
1 1682 vT ax 1682 vT dx 8B vTox; 2 mv o’

where we used B = m/2kT.

2.5 Application 1: Structure of Weak Shock Waves

The one-dimensional Rankine-Hugoniot conditions are given by

s[p] = [pu] = [m]
sloul = [pi + p]
sle] = [(e +p)u].,

(continued)
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where s = dx/dt is the speed of the discontinuity and e is the total energy
with
2 p

1 1,

= = —_— = €. 2.74
€= pu +y—1 S P +p (2.74)
Here, ¢ = p/p(y —1) is the expression for the internal energy. Since the Euler
equations are Galilean invariant, we may transform the Rankine-Hugoniot
conditions into a coordinate system moving with a uniform velocity such
that the speed of the discontinuity is zero, s = 0. The steady-state Rankine-

Hugoniot conditions can then be written as

Polto = P11 (2.75a)

pous + po = p1u; + pi (2.75b)

(e0 + po)uo = (e1 + p1u. (2.75¢)

If we let m = poup = piu;, we can distinguish between two classes of

discontinuities. If m = 0, the discontinuity is called a contact discontinuity
or slip line. Since ug = u; = 0, these discontinuities convect with the fluid.
From (2.75b) we observe that po = p; across a contact discontinuity but in
general pg # p;. By contrast, if m # 0, then the discontinuity is called a shock
wave. Since ug # 0 and u; # 0, the gas crosses the shock, or equivalently,
the shock propagates through the fluid. The side of the shock that comprises
gas that has not been shocked is the front or upstream of the shock, while the
shocked gas is the back of downstream of the shock.

Problem 2.16 Explicitly, derive the O(¢) and O(g?) expansions of the Euler
equations (e.g., Eqs. (2.46a)—(2.46¢)).

Solution The 1D Euler equations can be rewritten as

p 9 __
i + g(pu) =0
_(ou _du az, p
P (5 " a_) T Ty
p _p  _on

- U— -_— = O,

i o TP
where we introduced the dimensionless variables 7 = ¢t/T,x = x/L,p = p/po,p =
p/po, and u = u/V,. Here, T and L are a characteristic time and length scale
respectively, and V), is a characteristic phase velocity. Also pg and pg are equilibrium
values for the density and pressure far upstream of any shock transition.
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By introducing fast and slow variables § = x —7 and © = €7 we find

o 9k _0 o _dva ved _ o0 oo

9 9fdr  9f 0 ot 0F

%  ox0F  OF
If we expand the flow variables about a uniform far-upstream background, we obtain
p=1+epi+epr+...

ﬁ:8ul+€zuz+...

p=14ep+epr+...

A. Continuity Equation
For the continuity equation we find the general expression

99 (1+epr+&p+...)
531 5 ep1+¢e"pr+ ...

d
+a—ég_[(1+8p1+82p2+...)(8u1+€2M2—‘r...)]ZO.

e Terms of order O(¢):

dp1 ouy
o + o = p1 = (2.77)
+ Terms of order O(&?):

do1  dpy | Ouy  Opiu

I U

B. Momentum Equation
The general form of the momentum equation is given by

0
8(1+8,O1+82p2+...)a(8u1+82u2+...)

d
—(1+8p1+€2p2+...)—§(€u1+82M2+...)
d

+(1+8,01+82p2+...)(£u1+£2u2+...)ag (s + ur + ...

__@i 2
= azg_(1Jrslerwer...),

=2 _ 2 2
where we used a;, = azy/V,.
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o Terms of order O(¢):

-
dui _ dg 9p aq

08y O y
* Terms of order O(&?):

8u1 8u2 8u1 + 8u1 t_lgo sz
- JE— U — = .
or o e Mo Y OF

C. Energy Equation
The general form of the energy equation is given by

3 3
s$(1+ep1+szp2+...)——(1+sp1+ezp2+...)

9
2 9 2
+ (eur + ¢ u2+...)%(1+ep1+sp2+...)
2 9 2
+)/(1+8p1+8p2+...)¥(8u1+8 uy+...)=0.
¢ Terms of order O(¢):
pi ouy
—4y—=0 = = yu,.
O +)’a§ p1r=vyu
» Terms of order O(&?):
dpr  Ipa ap1 duy du,
—_— - — — — =0.
o7 a§+ula§_+)/a§_+ypla§

Problem 2.17 Derive the nonlinear wave equation

i) +1 9
w oyl

a2 Lot

which is called the inviscid form of Burgers’ equation.

117

(2.78)

(2.79)

(2.80)

Solution From the first order expansions of the Euler equations (see previous

Problem 2.16), we find the relations

p1 = Ui Uy = —pi pP1L=yur.

2.81)
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From the last two relations it follows that 5130 = 1. For the second order equations,

O(s?), we find

3,02 duy 3,01
ML
E %_ E p1ur) —
duy “co op2 du;  duy duy
72 Teo2 7 T 2
oy oe or  ac Mae
3P2+ oy _ Opr 0w g
OF 14 9 ot 174! O 1 0F
Equation (2.82c) can be rewritten as
dp2 _ Op ouy ap1 duy
dE ~ or P T TV

Substituting this result into Eq. (2.82b) and setting Ezfo = 1 we obtain

0 0, duy 0, 0 0 ad
Uy _(P1+ Py uz) o Jl_ dm
i3 0 3 3 9 ot
which can be simplified to
1 8p1 8u1 1 8p1 8u1 aul 8u1

yor TP Ty TP T ar e
Now we substitute p; = yu; and p; = u; from Eq. (2.81) and obtain

8u1 + 8u1 + 8u1 8u1 8u1 8u1
— u — U
or VM e TMTE T T e T M

Finally, this can be simplified to

8u1 Yy + 1 8u1
—+ il =0,
at 2

3
which is called the inviscid form of Burgers’ equation.

Problem 2.18 Solve the linear wave equation

8u+ 8u_0
ot Cﬁx_’

(2.82a)

(2.82b)

(2.82¢)

8u1

Mlg,

(2.83)

where c is a constant and the initial condition u(x,7 = 0) = f(x). Write down the

solution if f(x) = sin (kx).
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Solution The initial curve at time ¢ = 0 can be parameterized through
t=0 X =X u(x,t =0) = f(xo). (2.84)

The set of characteristic equations (see also Problem 2.3) and their solutions are
given by

dt

— =1 t = T + const, t=r1

dt

dx

— =cC X = cT + const, X=cT+ X9
dt

du

— =0 u = consts u = f(xp).
dt

From the last equations it follows that u is constant along the characteristic curve
xo = x — ct. In particular, xo = x¢(x, ). The characteristics can be inverted and we
find u = f(xp) = f(x — ct). Together with f(x) = sin (kx) the solution is given by

u = sin (kx — ckt) = sin (kx — wt) , (2.85)

where we used the dispersion w = ck.

Problem 2.19 Consider the initial data

0 x>0
Ux,0) = = (2.86)
1 x<O

for the partial differential equation written in conservative form
oU 1 o> 0
ot 2 0x
Sketch the characteristics. What is the shock propagation speed necessary to prevent
the characteristics from crossing?
Solution First, we rewrite Burgers’ equation in the form

o U

E-f- a—o.

The set of characteristic equations is then given by

dt dx du
— =1 —=U — =0.
ds ds ds
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From the last equation, dU/ds = 0, we find that U = const. along the
characteristics. In fact we have U = Uy(xy), where Up(xg) = U(x,0) is given
by the initial data, Eq. (2.86). Since U is constant it follows that

d
d_f =U = UO(XO) —— x(s) = U()(X())S =+ Xp.

And since dt/ds = 1, so that s = ¢, we find for the characteristic curve

X forxg >0
X(t) = UO(xO)t +.X() —t x(t) — 0 0= ’
xo+t forxy <O

where we used the initial conditions given in Eq. (2.86). The curves are shown in
Fig.2.2. To prevent the characteristics from crossing, we introduce a shock with
propagating speed (valid for the inviscid Burgers’ equation)

[3U°] _Uo+U 1
w = 2 2

S =

with Uy = 0 and U; = 1, and where s = (Uy + U;)/2 is the shock jump relation
for the inviscid Burgers’ equation, connecting the speed of propagation s of the
discontinuity with the amounts by which the velocity U jumps. Figure 2.3 shows
this case.

2

181 1
161 |
141 ]
121 |

t 1r 1
0.8 |
0.6 |
0.4 |
02 |

0 L I
-1 -0.5 0 0.5 1

Fig. 2.2 Shown are the characteristic curves. Apparently, the curves intersect
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0 L
-1 -0.5 0 0.5 1

Fig. 2.3 Shown are the characteristic curves with the shock speed s = 0.5

Problem 2.20 Starting from the stationary Rankine-Hugoniot conditions (2.75a)—
(2.75¢), show that

2 Po — D1
m = — ,
To— 11

where T = 1/p. Show also that egtg — e;7] = p1T1 — poTo and hence that

po + p1
2

€1 — €+ (t1 — ) =0,

(the Hugoniot equation for the shock) where € = pt/(y — 1).
Solution

A. We begin with Eq. (2.75b) and rewrite this equation as

22 22
pu pU
Pl”f—Poué:PO—Pl - #—% = Ppo—D1,

where we multiplied each term on the left-hand side with 1 = p1/p1 = po/ po-
Using now Eq. (2.75a) and letting pouy = pju; = m, we find immediately

1 1 Po— D1
mz[———i|:p0—p1 - m? = ——
oL Po To— T
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where t = 1/p. Note that, since pu = m and thus t = u/m, we can rewrite the
expression as

m= T h == (uo —uy) = o ;pl . (2.87)

Up — Up

B. We begin by rewriting the condition (2.75a) in the form u; = uppo/pi, so that
condition (2.75c¢) can be written as

0
(eo + po)uo = (e +p1)uog— = 1(eo + po) = ti(er +p1),
1

where we divided both sides by uy and py and replaced ¢ = 1/p. Reordering
the equation, we obtain

€pTo — €171 = P1T1 — PoTo- (2.88)

C. We begin with the left-hand side of Eq. (2.88) and substitute

Lo Ry
e = pe€ —pu- = | € —u —
peT P 2" )T

where © = 1/p, € is the internal energy, and e is the specific total energy (see
the introduction of this section). We obtain

1, 1,
€o+§'40 - €1+§“1 = p17T1 — PoTo

1
€ — € + 3 (ué —u%) =p1T1 —PoTo

1
€ —€1 + 3 (o — u1) (uo + u1) = p171 — poTo-

We substitute now (u#o—u;) by Eq. (2.87) and use u = mt for the term (ug + u1),

and obtain
1 po—p1
€) — €] — - ——— (m7o + m11) = p171 — PoTo
2 m
Po—P1
€0 — €1 — > (to + 71) = p171 — PoTo
1 1 1 1

€ — €1 — EPOTO - EPOTI + EPITO + Eplfl = Pp1T1 —PoTo
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1 1 1 1
€ — €1 + EPOfO - EPOTI + EPITO - Eplfl =0
1
€ — €1+ E(Po +p)(to— 1) =0,
which is the Hugoniot equation for a shock.

Problem 2.21 Show that the Cole-Hopf transformation

— o (2.89)

¢

removes the nonlinear term in the Burgers’ equation
Uy + Uty = Klyy,

and yields the heat equation as the transformed equation. For the initial problem
u(x,t = 0) = F(x), show that this transforms to the initial problem

1 X
® = P(x) = exp [——/ F(n)dn:| , t=0,
2K 0
for the heat equation. Show that the solution for u is

foo X— 77e—G/ZKd)7

oot

ffzo e—G/ZKdn

u(x,t) =

where

n _ 2
G = [ Fapan + S0
0 2t
Solution Note that the velocity u is a one-dimensional function of time and
space, thus u = u(x, r). The Cole-Hopf transformation (2.89) introduces a function
¢ which is also a function of time and space, ¢ = ¢ (x, ). To avoid any ambiguities
we define the initial condition at time t = 0 as @ = @(x) = ¢(x,0).

A. With the Cole-Hopf transformation the derivatives of u with respect to ¢t and x
are given by

¢¢xx ¢)2 _ 2 ¢¢xr - ¢x¢r
T e
¢XXX ¢X¢XX

¢3
8 + 6k pE — 4k ¢3.

Uy = —

Uyy = —
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Burgers’ equation becomes then

Uy + Uy — KUy = _@ + P + Poxx . K¢x¢xx

o g e
= ¢) (Kd)xx - ¢I‘)x - ¢x (K¢xx - ¢)[) - 0

Note that the expressions in both brackets are identical. For any non-trivial
solution of ¢, i.e., ¢ # 0, this equation is fulfilled if the term in brackets equals
zero, and thus

K¢xx = ¢1‘- (290)

Equation (2.90) is called the heat equation and we note that the Cole-Hopf
transformation reduces Burgers’ equation to the problem of solving the heat
equation.

B. By using Eq.(2.89) we find for the initial problem (setting ¢t = 0, so that
¢(x,0) = @(x)) the following ordinary differential equation

$x(x,0) do(x) F(x)

——dx,

F(x) = -2« $(x.0) o0~ 2

where u(x,t = 0) = F(x). The general solution is given by
1 X
In®(x) —In®(0) = ——/ F(n)dn
2K 0

1 X
@(x) = Cexp [_Z/o F(n)dn} , (2.91)

where we used C = @(0).

C. In order to solve Burgers’ equation we essentially need to solve the heat
equation (2.90) and transform the solution back according to the Cole-Hopf
transformation (2.89). Let us begin by rewriting the heat equation as

I _ PP
o * 0x2

¢x,t =0) = P(x) —00 <X < 00.

—o<x<oo, 0O0<t (2.92)

with the initial profile @(x) at time r = 0, given by Eq. (2.91). A very common
approach is to transform the function ¢ (x, ¢) into Fourier space

P(x,1) = % / ik bk, )™, (k1) = / - dx ¢(x,0)e”™  (2.93a)

o0

D(x) = % / "k d k)™,  Dk) = / i D (x)e (2.93b)
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where, qg(k, t) and @(k) are the Fourier transforms of ¢(x,f) and @(x). By
substituting the Fourier transform of ¢ (x, 7) into the heat equation (2.92) we

obtain
8¢>g/;, D _ —kk*P(k, 1) keR, 0<t¢ (2.94)
(k. 0) = D (k) k € R.

For each constant wave mode k, the function qg(k, t) fullfils the initial problem
with the initial condition ¢(k,0) = @ (k). The ordinary differential equa-
tion (2.94) can easily be solved,

3¢ (k, 1) ) . . 5
= = —«k°0 Ing(k, 1) —Ing(k,0) = —kk’t,
3k Kk 0t = n¢(k, 1) —Ing(k,0) Kkt

where we integrated from ¢ = 0 to ¢. Since QAS(k, 0) = qﬁ(k) we find our solution
bk, 1) = D (k)e . (2.95)

Now we transform this solution back into real space, using Eq. (2.93a),

o

1 A .
Pl 1) = — / dk & (kye " F ek,
21 J oo
Substituting now the initial condition @ (k) by Eq. (2.93b) we find
1 &0 * 0 2, .
¢(x, 1) = —/ dx’ @(x’)/ dk e gk T gl
27 Joo —00

Note that we use the x’-coordinate for the back transformation of the initial
condition. The integral with respect to k is readily solved by (see Problem 2.27
for a detailed analysis of the integration)

X 2 T =)
K(x—x) :/ e gkt ik e = ‘/K—te_ o (2.96)
—00
so that
1 o0
o(x, 1) = 2—/ dx' d(X)K(x —X'), (2.97)
T J-co
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where K(x — x) is the so-called heat kernel. Note that this integration is only
convergent for k > 0 and # > 0. Thus, we find the general solution

¢(x.0) = <P(x)e = dx

1
Vamkt

This solution is a convolution of the fundamental solution

Yx, 1) = ;ex [—i}
U Sanxt Pl %

and the function @(x’). Substituting @(x’) by Eq. (2.91) we obtain

X (x x/)2
J_ [——K/ F(n)dn — P ]

The spatial derivative is then

C © Ly 1 X (x— x/)z
)y = — —— | F(pdn- —L| av.
) 4mict /—oo 2kt P |: 2K /0 (rhdn 4t )

According to Eq. (2.89) the solution of Burgers’ equation is then

$(x.1) =

00 x—x 1 X (x—x')?
f—oo r [_ﬁfo F(ndn — 4kt :| dx’

X x—x/)2
S exp [~ i Fandn - 5] av

u(x,r) = (2.98)

Problem 2.22 Show that the exponential solution of the characteristic form of the
steady Burgers’ equation admits a solution that can be expressed as a hyperbolic tan
(tanh) profile, given u(—o0o0) = uy and u(co) = uy.

Solution Burgers’ equation is given by

3u+ 3u_ 9%u
o ox T o

The steady state Burger’s equation can also be written as

where we multiplied by 2 and assumed that « is independent of x. Obviously, the
term in brackets has to be constant, and the dimensions of that constant are of the
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order velocity squared. Thus, we introduce the constant u, and have

W — 22— = uz.,

dx ¢

where u, is a constant velocity that has to be determined by the boundary conditions.
We can rewrite that equation and obtain

/d /d 2k ZK/d 1 2k J 1
x= | du =—— [ du—s5 =—— —:
u? —u? u? - uc yl—y2

c

where we used the substitution y = u/u,. According to Gradshteyn and Ryzhik [2],
Eq. (2.01-16), the integral can be solved by

2k (u(x) )
x = —— arctanh + Xxo,
Uuo c

where x is an integration constant and u(x) obeys the condition —u, < u(x) < u,.
Solving this equation for u(x) gives

u(x) = —u.tanh [(x — Xp) ;—;] ,

where we used tanh(—a) = — tanh(a). Now it is clear that the integration constant xy
shifts the tanh(x) by a distance xo in the positive or negative x direction, depending
on the sign of xy. The constant 2« /u. has the dimension of a length. For convenience,
we introduce a characteristic length scale [ = 2k /u, so that our solution is

u(x) = —u, tanh (x - XO) . (2.99)

Example: Shock. Here we consider the example of a shock located at xo and a
background flow with the upstream velocity up = u(x = —o0) and the downstream
velocity u; = u(x = +00).

A. By using tanh(£o0) = +1 and Eq.(2.99) we find the relations uy = u, and
u; = —u., and therefore uy = —u;. This also implies u(x = xy) = 0, because
tanh(0) = 0, which means, that the shock speed at the position of the shock
Xo is zero, thus u(xg) = 0. However, in some cases one is rather interested in
uy # —uy. It is obvious that, in this case, we have to add a constant C # 0 to
Eq.(2.99),

X — X0

u(x) = —u, tanh( ) el (2.100)
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to guarantee that u(xp) # 0. We find immediately from Eq. (2.100) that

ux=—-o0)=u.+C (2.101a)
ux =x9) =C (2.101b)
u(x = +o0) = —u. + C. (2.101¢)

To specify the constant C we impose another boundary condition,

u(x = xp) = l —; Y= C, (2.102)

which means, that at the shock position x( the shock speed has decreased to the
constant arithmetic mean C = (ug + u;)/2, which is zero only for uy = —u;.
The constant u, is determined by Egs. (2.101a) and (2.101c). Subtracting the
second equation from the first equation and dividing by 2 gives

Up — Up

2

U =

Substituting C and u, back into Eq. (2.100) gives

u(x) =

Mot _Uo—Mh (x_xo) , (2.103)

2 2

which provides the correct results for the boundary conditions. In the case that
C = 0 and, thus, uy = —u; = u, we find the result as given by Eq. (2.99). As an
example, Fig. 2.4 shows the velocity profile (2.103) across a shock for 1y = 1
and u; = 0.25 and the shock position xy = 5.

B. The exponential solution of the characteristic form of Burgers’ equation is
given by

Uy — uop Uy — uop uy + ug
u—uo+m, where z = ic (x— 3 t). (2.104)

Note that the hyperbolic tangent can be expressed by

2
ex 41"

tanhz =1 —
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Fig. 2.4 Shown is the velocity profile for xy = 5, up = 1 and u; = 0.25

By expressing uy = uo/2 + up/2 in Eq. (2.104) and adding a ‘zero’ in the form

of 0 = u; /2 — uy /2, we obtain

u =

up Ul up U up —u up + uy

Up — uy

Up —

2 02 2 2 ex4l 2

2

uy —

2 2

- 2
=u0+u1+u0 Uy 1— . _u0+u1+
e+ 1

This result is identical to Eq. (2.103).

e+ 1

uj
tanh(z).
5 tan ()

2.6 Application 2: The Diffusion and Telegrapher Equations

Legendre’s differential equation is an ordinary differential equation, given by

AP dPu()

0=(1—p?)
du? du

d dp,
= [(1 - 1) ]+n(n+ Py,
dup dp

+n(n+ P, (1)

(2.1052)

(2.105b)

(continued)
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with n = 0,1,2,.... Solutions to this differential equation are called
Legendre polynomials, where each Legendre polynomial is an n-th degree
polynomial and can be determined by

ey
- 2l dp"

1 —
Po() = F(n+ 1,—n, 1;7“) : (2.106)

where F (.. .) is the hypergeometric function. The last expression on the right
side is also called Rodrigues’ formula. The generating function is

=Y P(t". <1 (2.107)

1
Vi=2ut+ =

An important relation is given by

L(p,1) =

1
2
Pn Pm = nm- 2.1
/_ 1 (W) Pwm(p)dp T +15 (2.108)

Problem 2.23 Legendre polynomials P,(x) and P,, (1) satisfy Legendre’s differ-
ential equation (2.105a). Show that for n # m, the following orthogonality condition
holds,

1
/ P.()Pp()du =0 for n # m. (2.109)
—1

Solution Using Eq. (2.105a), Legendre’s differential equation (for two Legendre
polynomials P, and P,,) is described by

d dp,
— | =u? +n(n+1)P, =0
au au

d

dP,,
— (1= pP) == |+ m(m+ 1)P, =0,
au au

where n # m. Multiply now the first equation with P,, and the second with P,, then
subtract the second from the first. We obtain

[m(m + 1) —n(n + D] PP,

d dP, d dP,,
=Py | (L= p?)— | = Py | (1= p?) =
du an du du

dp, dpP,
- (1 - Mz)Pn_ .
au au

d
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It is easy to show that the last line equals the second. Now we integrate both sides
with respect to 1 and obtain

1
mm + 1) — n(n + 1)] / PPy
-1
1
[ ol )
-1 dp dp
+1
e
du dp )1,

because the term (1 — u?) vanishes for 4 = =1. For n # m we have the
orthogonality condition given by Eq. (2.109).

Problem 2.24 The generating function for the Legendre polynomials is given by
Eq. (2.107). By differentiating the generating function with respect to ¢ and equating
coefficients, derive the recursion relation

(n+ 1)P,y1 +nP,—1 = 2n+ )uP,, n=1,2,3,....

Solution We consider the partial derivative of Eq. (2.107) with respect to ¢ and
obtain

aL n—t >

E = —3/2 = anntn_l.

(1 —2ut +12) o

By multiplying both sides with (1 —2ut + tz) we find

o0
M= 2 n—1
S e — (pL—t)E Pit" = (1—2ut+1t E nP,t" !,
\/1—2;1,t+t2 )n=0

where we used the definition of the generating function (2.107) for the first equality.
By expanding the parenthesis in front of both sums we find

o0 o0 o0 o0 o0
D Pt =Y " Put"t =N 0Pyt =Y " 2unPyt" + Y nPyt"t
n=0 n=0 n=0 n=0 n=0

Compare now each coefficient with the same power of t. We find
/‘LPn —P,q = (n + 1)Pn+1 _Zlunpn + (}’l— 1)Pn—l-
Rearranging leads to the recursion relation

(n + 1)Pn+1 + nPn_l = (21’! + 1)MP,1
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Problem 2.25 By using the generating function and Problem 2.23 above, show that

1
| Prwdn = 2.110)
-1

2n+1
Solution By multiplying the generating function (2.107) with itself we obtain
o0 [o olENNe o]
—_—— = P t" Put™ | = PPt" ",
where |#| < 1. By integrating with respect to i we find

1
/ 1—2W+f2 du = ZZ/ p,P d,ut"J””—Z/ Pzd,utz”

n=0 m=0

since we know from Problem 2.23 that f_ll P,Pndp = 0 for m # n. Let us consider
now the left-hand side of that equation. By using @ = 1 + > and x = —2ut we have

/1 1 J 1 [ 1 0 1[1 @+ 9]
e = = — |In(x X
=2+ T %) et 2t —
1 a + 2t 1 1+2t+17
—1In =—In|——
2t o —2t 2t 1—-2t+1¢2
1 1+1\° 1 1+1¢
= —1In _— =—In{ — .
2t 1—1¢ 1 1—1¢

According to Gradshteyn and Rhyzhik [2], Eq.(1.513-1) the logarithm can be
written as an infinite sum

1+1 >
ln( + ) Pt with 1] < 1.

=o

Together with the factor 1/¢ we find for the left-hand side

! 1 . 2 2i . ! 2 2i
/_1 T—ou+ e T Sy ;O/_l nth

By comparing the coefficients for each n we find

1 5 2
P.dp = .
—1 2n + 1
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A basic problem in space physics and astrophysics is the transport or charged
particles in the presence of a magnetic field that is ordered on some large scale
and highly random and temporal on the other scales. We discuss a simplified
form of the Fokker-Planck transport equation that describes particle transport
via particle scattering in pitch angle in a magnetically turbulent medium since
it resembles closely the basic Boltzmann equation. In the absence of both
focusing and adiabatic energy changes, the BGK form of the Boltzmann
equation reduces to the simplest possible integro-differential equation

of of _(f)-f
a TRy T T

(2.111)

where f(r,t,v, ) is a gyrophase averaged velocity distribution function at
position r and time t for particles of speed v and pitch-angle cosine & = cos 6

with p € [—1, 1] and where
1 !
—5 [
is the mean or isotropic distribution function averaged over p.

Problem 2.26 Starting from Eq. (2.111) derive the infinite set of partial differential
equations

n 3 n a n—
(2n+1)i+( + v f:1+n fa + (2n +1)—_J§5,10 (2.112)
withn =0,1,2,....
Solution By expanding f = f(r,t,v, ) in an infinite series of Legendre
polynomials P, (1),
1 o0
=2 @nt DP(f(r1,0),
n=0

we can rewrite Eq. (2.111) as (neglecting the factor 1/41)

Z(z +1yp, 2 +uv2(2n+1)P ﬁ

11 &
N'en+nHP,f, = —~ 2n+ VP, fodu.
+tZ(n+) 12/ Z(n—f—) 2

n=0 n=0
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The right-hand side of that equation can be written as

1
=1 Z(zn FDPfdp =~ Z(zn e

where we included Po() = 1 in the integral. With the orthogonality rela-
tion (2.108),

! 2
P,Podu = 6,
/ L P
we find
11
=1 Z(zn P fdp = an(r Lo =2,
since the delta function contributes only for n = 0. The differential equation
reduces to
f f
Z(Zn + )P =2 + pv Z(2n + l)P + Z(Zn +nP.f =2,
n=0

With the recurrence relation (2n + 1)uP, = (n + 1)P,+1 + nP,—; we can rewrite
the second term and find

Z(z +1)P, == +vZ(n+1)Pn+lﬁ

+vZnPn1 + - Z(2n+l)Pnf,,—]i.

Now we multiply the equation by P,, and integrate with respect to u,

of; fn

%(2n+1)/ PPy dpp== +vZ(n+l)/ PP,H_ldu;

+vZn/ PPnldu%—i- Z(z +1)/ PP, duf,
n=0

1
=f—0/led,u—f?0/ PoP,, du.



2.6 Application 2: The Diffusion and Telegrapher Equations 135

With the orthogonality relation Eq. (2.108) we find

s 2 o > 2 of;
2(2}1 + 1)2m—+15mn5 +v ’;(Vl + 1)2m—+15mn+15

n=0

S SREEPU 0 1 PR S
v nN—"—0mn—1"75_ - n mnJn
e 2m+ 1 Vor T = 2m+ 1

2

_f
T2m+1

m0-

Note that the second term contributes only for n = m — 1, while the third term
contributes only for n = m 4+ 1. All other terms on the left side contribute only for
n = m, so that

aﬂ v 2m 8fm_1 U2(m+1) 8fm+1 —i—lf _]ﬁ 2
ot m+1 or m+1 o 2" 12m+1 ™

By multiplying this equation with (2m + 1)/2 and swapping the indices m <> n we
obtain Eq. (2.112).

Problem 2.27 Show that the integral

o) 2
/_oo exp (—Bw’t — iawt — ior) do = \/gexp (—%) . (2.113)

Solution The exponential function can be rewritten as

t
exp (—Bw’t — iawt — iwr) = exp |:—ﬂt (a)2 +iwZ ,B—it_ r)i|

2 2
o[-0ty - ]

By substituting x = @ + i (at + r) /2t we obtain

o t 2 o0
/ exp (—'3(021‘ — ldwt — ia)r) do = exp [_M} / e—ﬁtxzdx
—o0 48t oo

N (ot +1)?
- Vae )



Chapter 3
Collisional Charged Particle Transport
in a Magnetized Plasma

3.1 The Kinetic Equation and Moments for a Magnetized
Plasma

The non-relativistic Boltzmann equation is given by Eq.(2.1), where the
particle-particle collisions are represented by the collision term (§f/8t)co; on
the right-hand side. Consider now a collisionless magnetized plasma, where
the collision term is zero. A prominent example for such a plasma is the
solar wind, which consists of protons, electron, ions, .... Charged particles
are primarily affected by electromagnetic fields, so that the collisionless
Boltzmann equation for a particle species a can be written as:

%—i—v«Vfa—l—q—a(E—i-va)-vaazo, 3.1)
mg

where F = g (E + v x B) is the Lorentz force. In the neighborhood of each
discrete charged particle, the fields can be large and dominate the macroscopic
large-scale fields. thus, E and B fluctuate strongly on short length scales
compared to the Debye length (which is the distance over which charged
carriers are screened). We take E and B to be the average of the actual electric
and mange fields over many Debye lengths, and the effects of the short-range
electromagnetic fluctuations or collisions will be included through a collision
operator

fa
Culfa) = 22|
“ (fu) 8t lcoll
(continued)
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also called the Fokker-Planck operator, so that the Boltzmann equation (2.1)
can be written as

fa

Ya oV + L E 4 v xB)-Vof, = Cu(f). 3.2)
ot my

The collision operator

C, = Z Cab(ﬁufb) (33)

b

is a sum of the contributions from collisions with each particle species b,
including self-collisions a = b. Like the Boltzmann collision operator,
the number density, momentum, and energy moments of the Fokker-Planck
collisional operator must satisfy

/ Car(frfy)d* = 0 (3.40)
/ a0 Cop(fon )P0 = — / 59 Coa(fonfi) o (3.4b)
/ émavzcab(ﬁ,,fb)d% - / émbvzcba(ﬁ,fa)d%, (3.40)

since the force a species a exerts on a species b must be equal and opposite to
that which species b exerts on species a, so that no net momentum or energy
change results from collisions. For b = a we have

/ Coa(f)d?>v =0 (3.5a)
/ mavCo(f)d>v = 0 (3.5b)
/ %mavzcm,( fod*v = 0. (3.5¢)

Any model collision operator has to satisfy these properties!
By taking moments of the kinetic equation (3.2), on can derive the fluid
equations (see Problem 3.1)

% 4+ V.(u)=0 (3.62)

(continued)
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a% (mnu) +V -P=qn(E +uxB) + /mvC(f)d3v (3.6b)

a1 3 1
5 |:§mnu2 + EnkT:I +V-Q=gnE -u+ / 5muZC(f)d%. (3.6¢)

The right-hand sides of the fluid equations (3.6a)—(3.6¢) contain the rate of
change of momentum and energy due to the electromagnetic fields and the
collisional transfer of momentum and energy via collisions to and from other
species, and may be expressed as

/ mvC(f)d°v =R (3.7)

/ %vaC(f)d% =Q0+R-u (3.8)

Note that the scalar Q describes the rate of thermal energy transfer and not the
heat flux vector Q (see below). R is the rate of transfer of momentum to the
particle species of interest due to collisions with other species in the plasma.

Problem 3.1 By taking moments of the kinetic equation (3.2), derive the fluid
equations (3.6a)—(3.6¢).

Solution We begin with Eq. (3.2) and neglect the subscript a for convenience in
all following calculations. We calculate the zeroth, first, and second moment for the
continuity, momentum-, and energy conservation equations. In order to calculate the
moments we define

n(A) = /Afd3v.

If we substitute A by 1, v, v, v3,... we find for the first three moments

n=/fd3v n(v)=nu=/vfd3v n(v2>=/v2fd3v. (3.9)

A. Zeroth Moment. We integrate Eq. (3.2) with respect to velocity d°v and obtain

/%d3v+/v.vfd3v+/%(E+vxB)-vad3v =/C(f)d3v‘
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The time derivative in the first term can be pulled in front of the integral. The
nabla operator in the second term pertains to the spatial derivative and can also
be pulled in front of the integral. However, the integral in the third term includes
derivatives in velocity space, thus, the nabla operator cannot be pulled in front
of the integral. Instead, we have to use integration by parts,

2/(E+va)-Vde3v
m
= [f(E+vxB)]zZiooo—/va-(E—}—vxB)d3v.

The first term on the right-hand side is zero since any physical distribution
function vanishes for v — Fo00. The electric and magnetic fields are functions
of x and ¢, but not of v. Thus, the nabla operator operates only on the (v x B)
term. It is an easy matter to show that V, - (v x B) = 0, since the i-th component
of the remaining vector (after the cross-product) is independent of the velocity
in i-direction. Thus, the derivative with respect to velocity is zero. We obtain

%/ﬁpv +v./vfd3v — /C(f)d%.

With the moments expressed in Eqs. (3.9) and with | C( f)d*v = 0 we derive
the continuity equation

%+V-(nu)=0.

B. First Moment. Here we multiply Eq. (3.2) with mv and integrate with respect
to d*v. For simplicity we consider the j-th component of the velocity vector. We
find

/mvj%d% +/mvjv'Vfd3v
+/qvj (E +v x B) Vyfd*v = /mviC(f)d?’v.

For convenience let us consider each term separately, beginning with the first
term on the left-hand side. As before, we can pull the time derivative in front of
the integral

ad 3.0
E/mu,fd v=o (mnu;) (3.10)
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where we used the expressions in (3.9). For the second term we rewrite v - Vf =
v df /0x, where we used Einstein’s summation convention. The derivative is
independent of the integration and we can write

0 ad P
B—Xk/mvjkad% = 3_xk [mn(vjvk )] = a—xjk =(V-P)., (3.11)

where we used the momentum flux tensor Py = mn ( vjvk) (see [5] for more
information). Again, for the third term we use integration by parts and obtain

/qvj(E—i—va)'vad%
:q[fvj(E—FvxB)]o_ooo—q/va~[u,~(E+vxB)]d3v.

The first term on the right-hand side is zero since the distribution function
vanishes as v — Fo00. For the second term on the right-hand side we find

vv-[v,-(E+va)]=%[vf(EﬂxB)i]:(E“XB)f%
=(E+vxB);§;=(E+vxB)

since the i-th component of (E + v x B) is independent of v; and, therefore, the
derivative vanishes. We obtain

/qvj(E+va)'Vufd3v Z—Q/f[E‘f‘”XB]jd?)v

= —qE; /fd% —q U (fv) d*v xB:|j

= —ng(E +uxB);, (3.12)

where the subscript j denotes the j-th component of that vector. Note that E and
B are independent of velocity v. By adding up Egs. (3.10)—(3.12) and by using
the vector description instead of the j-th component, we find

a%(mnu) +V-P=ng(E +uxB) +/mvC(f)d3v,

the conservation of momentum.
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C. Second Moment. Here we multiply Eq.(3.2) with mv?/2 and integrate with
respect to d>v. We have

m 20f m/ 2 3

- el - v

2/vatdv+2 vy - Vfd’v
1

+ %/ 2(E+ v x B) - Vifd'v = / Fmv*C(Nd.

Again, let us consider each term separately. The first term on the left-hand side
can be rewritten as

3m 2,73, am 2\ a 1 2 3
EE/vfdv— 3tzn(v )= % [2mnu +2nkT , (3.13)

where we used the fact, that the total energy is the sum of the kinetic energy
associated with the mean flow (the term proportional to u?) and the thermal
energy (the term proportional to 7, see [5] for further information). In the second
term we can pull the nabla operator in front of the integral and find

V-%/vzqfd%:v-%mn(vz )=V.Q (3.14)

with the heat flux vector Q = mn ( v2 ) /2. For the last term on the left-hand
side we have to apply integration by parts and obtain

g/ 2(E + v xB) - V,fd*v

= %[fv2 (E+vxB)]™, —%/fvv [v2(E + v x B)] .

The first term on the right-hand side is zero since the distribution function
vanishes as v — F00. For the second term on the right-hand side we use
V, [V (E +vxB)| =V, [v?]-(E +vxB) + vV, - [(E + v x B)]
=2v-E.

As before, the second term on the right-hand side is zero. With V,v? = 2v and
v-(vxB)=0,because v L (v x B). We find

g/ 2(E+vxB)-Vfd®v = —qE-/vfd3v = —qnE - u. (3.15)



3.1 The Kinetic Equation and Moments for a Magnetized Plasma 143

By adding up Egs. (3.13)—(3.15) we find

d[1 3 1
= |:§mnu2 + EnkTi| +V-Q=gnE-u+ / Emsz(f)d%,

the conservation of energy.

Problem 3.2 Derive the momentum equation (3.16) and the energy equation (3.17)
from the conservation laws (3.6a)—(3.6c¢).

Solution We derive first the momentum equation and then the energy equation.

1. Momentum Equation. Let us start with Eq. (3.6b). With [ mvC(f)d*v = R,
where R is the total force exerted on the particle of interest due to collisions with
other species in the plasma, we find for the j-th component of the momentum
conservation equation

aP;
(mnuj) + == gn(E +u x B), + R;,

axy J
where we used (V - P); = 9Pj/0x;; compare also with part B of the previous
Problem 3.1. For the momentum flux tensor we use

Pjx = péj + mjx + mnujuy,

so that the momentum conservation equation becomes
j 0
— (mnui) 4+ — 4+ —= 4+ — [mnujuk] =qn(E+uxB);+R;.
j k

In the next step we pull the two terms that include the pressure p and the viscosity
tensor 7j to the right-hand side. The mass m is independent of 7 and x. Since we
want to use the continuity equation for the remaining terms on the left-hand side
we derive

n n Ouj n d () + Ouj
mu;— + mn— + mu;— (nu mnu; —-
I ot ot J BXk k kaxk
dp Oy
=——— E x B), + R;.
ax;  Oxg tan BB+ R

Using the continuity equation, the first and the third term on the left-hand side
vanish and we obtain

ouj Ouj op Oy
— — ) =——--— E B); +R;.
m”(at +ukaxk) o™ +qn(E+uxB); + R,



144 3 Collisional Charged Particle Transport in a Magnetized Plasma

In rewriting this equation as a vector we obtain the momentum equation in terms
of the flow velocity,

mn(%—}-(u-V)u):—Vp—V'n—}-qn(E—}-uxB)—i-R. (3.16)

. Energy Equation. In the following we calculate the energy equation from the
conservation of energy (3.6¢),

d[1 3
E[Emnu2+§nkT:|+V-Q=an-u+Q+R-u,

where we substituted [ %vaC(f)d% = Q + R - u. Note that Q describes the
rate of thermal energy transfer, whereas Q is the energy flux (see below). Let us
consider now each term separately and note that we use Einstein’s summation
convention for simplicity.

A. The first term on the left-hand side can be written as

a1 2+3kT B Ou; +m 8n+3 8kT+3kT8n
gr | 2 T | Ty o 2" T2 o

where the particle mass m is time-independent and du?/dt = 2u - du/ot.
B. For the second term on the left-hand side we find

0

_ 59 N, 0
v-Q + 2 Ox; (u]p) + 0x; (

B 0x;

ai (m;)

N|§

”jk"k)
where we used the energy flux
5 1 ,
Qi=qi+ Euip + miu; + Emnu u;.

Recall that the pressure p = nkT, so that the second term on the right-hand
side can be written as

50 390 d

" (up) = = — (unkT = Ay

2 axl (“/p) 2 axl (u/n ) + axl (I/ljp)
3 _onw; 3 OkT e dp n Ou;
2 0x; ZMI 3 /3x/ prj
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where we used 5/2 = 3/2 + 1. We obtain finally

dg; 3, Onu; 3 OkT op ou;
V.-0=-+ 7= 4 Zyn— it el
Q 0x; * 2 Ox * 21" 0x; * “faxj +p8x,~

Ouk m > Inu; N Ouy
—u? mnuji—
ox; 2 Ox 7

o Ty
Up—" Tk ——
8x]

o

where we used u;0u?/9x; = 2ujuyduy / 0x;.
C. For the last term on the right-hand side we multiply Eq.(3.16) by u and
rearrange for R - u. We then obtain

ou; ou 0 om;
R-u:mnuj(a +u o= /) +M/8jc) +ujgj:—qnquj.

Note that the term with the magnetic field vanishes, since u - (u x B) = 0,
becauseu L (u x B) = 0.

The equation for energy conservation (3.6¢) becomes then

ouj m ,on 3 kT 3 _oOn dq; 3 _Onu; 3 OkT
mnu;—— + —u +—n— + —kT— +— + kT +—uin

dt E3 d 2 9 oy 20 w27 oy
N——— W—/ ——
2 4 5 5
n op n Ou; n Omj n Ouy L , Onu; n Ouy
Uj— — + u T —u"— + mnuu
! 0x; P 0x; axj *ox; 0x; 2 0x; o 0x;
—— N——— —— N ——
3 6 4 2
E+Q+ % 25 2 e
= gqnu;E; mnu; | — + u—= uj— ~+uj—— —qnu;E; .
qnu;L; i\ o kaxk T ox; T o qnu;L;
1 ~—— T 1
2 3

Note that the viscosity tensor 7 is symmetric, so that u;0mj/0x; = uxdmj/0x;
under the summation. We also find u;u duy /0x; = uyu;0u;/dxy. For convenience
we marked each term that cancels out. By using the continuity equation we find

3 a(kT) qu 3 B(kT) auj 3uk

PR TR L L M T
or written as a vector
3 (0T
3 (%+ V(kT))+pV-u=—V-q—7r:Vu+Q. (3.17)
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3.2 Markov Processes, the Chapman-Kolmogorov Equation,
and the Fokker-Planck Equation

Problem 3.3 Consider a coin tossing event. Suppose

X(t) =Xp =) xi. (3.18)

i=1
where x; are given by +1 for a head and —1 for a tail.

A. Determine the sample spaces C, of the random variable X,, for the first 5 tosses,
ie,n=1,2,34,5.

B. Determine the probability of all outcomes for each sample space! Interpret your
findings! (Hint: a table might be helpful.)

C. Explain what distribution function should be used and calculate the pdf of the
random variable X,, for the general case of n tosses.

Solution

A. The sample spaces of the random variable X,, for the first 5 tosses is given by

Ci={c:c=-1,1}
C={c:c=-2,0,2}
Ci={c:c=-3,1,1,3}
Ci={c:c=—-4,-2,0,2,4}
Cs={c:c=-5-3,-1,1,3,5}.

B. Let us consider the first toss with n = 1. The sum X; can be either —1 (for tail)
or 41 (for head). Both results have the same probability, namely 0.5. After 2
tosses the sum has the possible values X, = —2 (TT), X, = 0 (TH or HT), and
X, = +2 (HH). Thus, the number of all possible outcomes is 4. There is only
one way to reach X, = —2 or X, = +2, so both results have the probability
0.25, but there are two ways to reach X, = 0, thus the probability to get X, = 0
is 0.5. Similar considerations can be made forn = 3,4, 5, ... and we obtain the
probabilities as shown in Table 3.1. Obviously, the form of this table resembles
Pascal’s triangle, where each entry can be described by the binomial coefficient

ny n!
(a) ~ al(n—a)!
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Table 3.1 The schematic shows the probabilities for each outcome after
1-5 coin tosses

Stepsn/SumX, |—5|—4 -3 -2 |—1|0

1 (2 |3 |4 |5
1 1
1 2 2
1 2 1
2 3 4 4
1 3 3 1
3 8 8 8 8
4 T 4 © 4 T
16 16 16 16 16
5 T 5 10 10 5 1

32 32 32 32 32 32
The table resembles Pascal’s triangle

C. Since there are only two possible outcomes for tossing a coin it is straightfor-
ward to use the binomial distribution function to describe this experiment,

@ = (1) a-pr

where n is the number of tosses, p = 0.5 is the probability of obtaining head (or
tail), and a = (n + X,,)/2 is the number of heads (or tails). Note that a # X,,
since the entry for the binomial coefficient in Pascal’s triangle always starts

with 0 and not with X,, = —1, —2,.... Note also that the outcome of Eq. (3.18)
is restricted by the number of tosses 7 in such a way that the sum X,, = n — 2i,

where i = 0,1, 2,...,n. That means, after 3 tosses the sum cannot yield zero.

The pdf is then given by
n 1
f(Xn) = (n+X,1) E’
2

for X, = n—2i,wherei =0,1,2,...,n

3.3 Collision Dynamics, the Rosenbluth Potentials,
and the Landau Collision Operator

Problem 3.4 Show that

2 \ab 2 \ab a
03 T iy

At At 4

rel

and that

ab
((Avx)z) — z 1+ % ? 4aqb ! L _ fb(v/)dS /
At 4 mp 2wemy, r2 )L%) V3

min rel
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Solution We recall that the velocity changes in x, y, and z direction are given by

2
My 9adp 1
Av, =1+ —
( mb) (27tsma) 2r2Vr3el

qaqp cosf
Ayy = —— ——
2wemy Vit
sin 0
Av, = Gadb

2remy Vit

The characteristic length L% is given by Eq.(3.31), see Sect. 3.4 below. For the
average we apply the operator

M / " / 7 / (A0 21y (V) VyadrdOd.

With that we find

Av)? ab 2 pAp p2m 20
(( vy) ) :( qaqb ) / / /COS 11y (V) VierdrdOd>v’
Tmin 40

At 2mwemy, erl 2
_ 1 ()’ / dr [ fHO) 5
47[ sma Ymin r Vrel
_ Lab ﬁ;(vl)
T4 v,el

where we used [ cos? #df = . Similarly we find for the z component

ab 5 3 o
( (sz)z ) 9aqp D sin2 .
At N (27t€ma /rmin /0 / VZ 2 7fb(v )Vreldrded

rel”

_ 1 () /M_r £ 5
4 eEm, rmin T Vrel
L fb(v/)

47{ Vrel

where we used fozn sin @df = . The velocity mean square displacements in y-
and z-direction are identical. For the x-component we find

Avx 2y a 2 a Ap 2 ! Vre
{(Avy)?) (1M qadb Ho@)WVeel ;10130
At my 2memy, i 4p4y0

rel
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_ Ty M\ ads /“’ dr [ f®)
2 my 27tsma . = %

‘min rel

T 1 mg 2 4aqb ! 1 1 ﬁ,(l)/) 3.7
=" (14— ——— .
4 mp 2mwemy 2. A3 V2

min rel

Problem 3.5 By direct substitution, show that the Landau collision operator (and
hence the other forms) satisfy the conservation laws

/Cab(ﬁ,,fb)d% =0 (3.19a)
/mavca,,(fa,ﬁ,)d% = —/m,,vc,,a(ﬁ,,fa)d% (3.19b)
/ S Ca oo i)' = — / S i i) (3.19¢)

Solution The Landau form of the collision operator is given by

ity = K2 /V [fa(v) ) ) afa(w] . (320,

my 0V; mp ij{ mg  0v;

where we used the constant K = In A /87 (q.qp/€0)* for simplicity and the tensor

V2 8ii — VyeriViel)
V,'j _ % 5 rel,i relJ7 (321)
’ %
rel
with the vector V,,; = v — v’ and V = |v — v'|? in the denominator. Keep in

mind that the tensor V;; depends on v and v’. In the following calculations we will
frequently use the substitution

o) =V [ﬁngv)am) ﬁ(v’)%(v)} 3.22)

v} mg v

so that the Landau collision operator can be written as

K 0
Carlfurfi) =~ / T(w.v)d'.

Note that the expression T(v,v’) vanishes, if v; — =o0o. This can easily be
seen in Eq. (3.22); the first term on the right-hand side vanishes because f,(v; =
+00,vj, 1) = 0, since any physical distribution function vanishes as v — £o0.
The second term in Eq. (3.22) also vanishes, since df,(v; = 300, vj, vx)/dv; = 0,
for the same reason. Note that this is the derivative of the v;-component.
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A. For the first conservation law (3.19a) we have

K a
/Cah(faafb)d3v = —/—/T(v,v’)d3v’d3v.
mg Bvi

First, we swap the integrations with respect to v and v’, so that

K ad
/Cab(fa,fb)d% = —/d3v’/dv,~dvjdvk—T(v,v’).
my ov;

In the next step we execute the integration with respect to v; and obtain

K -
3 _ 3 V=00 _
/Cab(fasfb)d v = m—a/d U’/dvjdvk [T(v’v/)]v,:—oo =0.

Since f,(v; = £00, v;, vr) = 0 for any physical distribution function, we find
immediately that the zeroth order vanishes.

B. For the first moment (3.19b) we consider only the /-th component of the vector,
v — v;. The left hand side of Eq. (3.19b) can then be written as

d
/mavlCa;,(ﬁl,f;,)d% = K/d3v/d3v’ vla—T(v,v’).
Ui

By swapping the integrations with respect to v and v’ we obtain

0
/mavlca;,(fa,ﬁ,)d‘%v =K/d3v’/d3v vla—T(v,v’).
V;

Considering only the integral with respect to v we have to distinguish the
following two cases:

[ # i In this cases we can set either [ = j or [ = k. We choose here [ = j so
that

d vi=
/dvidvjdvk vja—viT(v, V) = /dvjdvk v [T(v, v’)]vi=i—§§ =0.
I =i Inthis cases we find use integration by parts, so that
/d3v v»iT(v V) =[uT( v’)]vi=+°° —/d3v T(v,v')
Lavi 5 i 5 vi=—00 5 .

The first term on the right-hand side vanishes (see above), but the second
term remains.
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With that, the left side of the conservation law (3.19b) can be written as
/ mavlCab(fasfb)dBU

_x / P / Fo v, [fa(v) @) _fo(@) 3fa(v)] 6

myp 8vj’» mg  0v;

where we substituted T'(v, v’) back into the equation. Similarly, we obtain for
the particle species b (just by exchanging a <> b and (!) v < v')

/ mpViCoa((fi fo)d*v

=k [ [ ”[ﬁ(v')aﬁ,(v) ﬂ(v)afb(z;')] 324

mg 0V nmy, 3vj

Note that Vj; is unchanged under the transformation v <> v’. By swapping the
terms in square brackets in Eq. (3.24) and by comparing with Eq. (3.23) we find
immediately the relation (3.19b).

C. The second moment is given by Eq. (3.19¢) and can be written as

1
[ smatcatimdv =& [ & [ v 221w
Again, by swapping the integrations with respect to v and v’ we obtain
1 2 3 3,1 30150 /
—maV Cop(fou, fo)d’v =K | &’V | &’v —v"—T(v,v").
2 2 8v,~

Now we want to investigate only the integration with respect to v, bearing in
mind that v> = v} 4 v} + v2. The last integral becomes then

/ T(v v)—Z/af’ 2vl—T(v v')

I=ijk
1 =+o0
= Z [Evl T(v, v)i| —/d3v v; T(v, 7).
I=ijk i=—00

Note that the last term has no sum, since _, dv7/dv; = 2v;. That means that
only the i-th component remains from that sum. Obviously, the first term on the
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right hand side vanishes as before and we are left with
1 2 3
Emav Cab(ﬁufb)d % (325)

Z_K/ds //dg, . [ﬁ(u)aﬂw) ﬁ,@/)aﬁ,(v)]’

81)]( mg  0v;

where we substituted the integral and the function 7'(v, v’) back into the expres-
sion. A similar expression can be found for particle species b by exchanging
a <> b and v <> v’ and we obtain

/ S ol f
_ S @) fa(v)  fa(v) 9fp(¥)
= K/d /d vV, |: 3, poy 81)]’» :|
ol [ [0 A Y
= K/d v /d v V,]|: my 0V me Ay, :| (3.26)

Note that v; was also changed to v’. In the last step we simply changed the terms
in brackets to get rid of the minus sign in front of the expression and to find a
similar expression for particle species a. Now we simply add up Eqgs. (3.25) and
(3.26) and obtain

1 1
/ 5mavzcab(fa,fb)cﬁv + / Embvzcbam,fa)d%

ok [ [0 (-l v 0 W) ) )|
mp BUJ- mg BUj
Note that v; — v/ = V,;;. Remember that we use Einstein’s summation

convention and that we therefore implicitly sum over all indices that appear
more than once. Obviously, the term (v; — v]) Vj; is the only term that includes
the index i more than once. Therefore, we may sum this term over all spatial
coordinates, leading to (recall that V,,;; = v; — v} and Vij is given by Eq. (3.21))

Z Vrel,ivij = (Z relvrelt ij Vrel IV )

rel

= rel |:(Z Vrelt 1]) - reZJ:|
rel

=0, (3.27)
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where we used Zi Vreribij = Vyerj in the first term on the right hand side and
>V, = Vy,in the second term. It follows immediately that

1 1
/Emavzca;,(fa,f;,)d% + / Em,,vzc,,a(fb,fa)cﬂv =0

and, thus, the conservation law given by Eq. (3.19c¢).

Problem 3.6 By using the Landau form of the collision operator, show that
Cup(fu.fp) = 0, if f, and f, are Maxwellian distributions with equal temperatures
T,=T,=T.

Solution The Landau form of the collision operator is given by Eq.(3.20).
Consider now f;, and f;, as Maxwellian distributions with

me \* mv?
fa=n4 exp|— ,
27tk3 Ta 2kBTa
4 my, 3/2 myv'
=n exp | — .
b b 27tk3 Tb P 2kBTb
Note that the primed velocities pertain to f;,. The derivations are then
af, mgv; myg 3/2 mgv>
— == ng exp|———
ij kBTa ZJTkBTa ZkBTa

%:_mw;nb( "y )3/2exp[ mbv/2i|

! kgT, ~ \ 27ksT)  2ksT

For the expression in square brackets in Eq. (3.20) we find

[fa(w () f@) 3fa(v)}

my av; my Bv;
nanyp mgmy, 32 mv?  mpv? 7 v v
= exp|—————— || 2L -2
ks \4n2K3T,T, P 2k, ~ 2ksTy )\ T, T,
nany ( mamy \ mav> " (0~ v))
=——|-—5=] exp|- ——— | (v =),
kT \ 4n22T2 Pl 2k~ 2kpr |\

where we have set T, = T, = T in the first step. Note that V,,;; = (vj — vf).

J
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Substituting this expression back into Eq. (3.20) we obtain

InA ” 2nﬂn mgm, 3/2
oty = 2 (1) (o )

8mm, \ €o kgT \ 472k3T?

X —

mgv?  mpv’?
Vi

_MaVT MUy 3.8
P Tk ZkBT} iV rej &0 (3.28)

Note that the expression under the integral is a sum over index j (using Einstein’s
summation convention). According to Eq. (3.27) we find that V;;V,;; = 0, thus, the
collision operator vanishes.

3.4 Electron-Proton Collisions

The Coulomb collision operator can be simplified if the colliding particles
move at very different speeds, such as electrons colliding with protons
moving at some average speed u,,. The scattering operator for electron-proton
scattering can therefore be expressed as the sum of the Lorentz scattering
operator L(f,) and C}, (see [5]),

eV - U
Cep(fe) = vep(v) (E(fe) i L Me) ; (3.29)
where
LeP 4
V) = 2= = % __1q4 (3.30)

v drm2ev’

is a velocity-dependent electron-proton collision frequency and the general

form
2 Ap d 2
L = (‘Mb) / . (q“q”) InA. (3.31)
emy rin T emy
where In A is the Coulomb logarithm.
The first part of the collision operator (3.29) describes the collisions of
electrons with infinitely heavy stationary protons, implying that only the

electron direction and not the velocity changes in a collision. Consequently,
there is only diffusion in velocity space on a sphere of constant radius

(continued)
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v = constant, and the collision operator is spherically symmetric. Finally,
note that the proton mass is completely absent from the collision operator,
depending only on charge e. This makes it straightforward to model electron
collisions in a plasma comprising several different ion species.

Problem 3.7 How would the result (3.29) change if the electrons scattered off a
background of (A) « particles (He—nuclei), and (B) a mixture of protons p and «
particles, as found in the solar wind emitted by the sun?

Solution

A. Since the collision operator depends only on the charge of the scattering centers

we find
mev - U
Carh) = ver(w) (£ = "0 4, ) (332
with the collision frequency
4nge?
e = ————InA4, 3.33
Vea () drm2elv? (3-33)

since g, = e and g, = 2e.
B. The general collision operator for multiple ion species is the sum over each
individual collision operator

Cei = Z Cej = Cep + Cea-
J

Substituting Eqs. (3.29) and (3.32) we obtain

= v (160 = "0 ) v ) (1080 = 50 ).

Under the assumption that the protons and a-particles move with the same
background velocity u, , we can simplify this expression,

Cor = () (E(fe) - %m) ,
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where v,;(v) = [vep(v) + vm(v)]. By collecting the collision frequencies for
protons and «-particles we find

(n,, + 4na) et

2

555 InA.
dmwmzegv

Vei(v) =

By introducing an effective charge Z.; with

Xzl XnZl  ny + dng
iz e Ne

where we used the fact that for a quasineutral plasma Zi nZ; = n,, and that
Z, = land Z, = 2, we find n.Z,y = n, + 4n,, so that the collision frequency
can be written as

neZeﬂe4

2

————=InA. 3.34
4drrmZe;vd 539

Vei(v) =
3.5 Collisions with a Maxwellian Background

The Chandrasekhar function (Fig. 3.1) is defined as

) — ')

Glx) = 22

(3.35)

where f(x) is the familiar error function,

f) = \/i; /Oxe_zzdz; F)=—=e>; f'()=-2'(). (336)

2
Nz

Problem 3.8 Show that the assumption of a Maxwell-Boltzmann distribution
function f;, (v) yields the solution to the partial differential equation

L2 (v28¢b) —H)  as B = ”“’”"G(i), (3.37)

v_za_v W 4n T, vr

where G(x) is the Chandrasekhar function (3.35) and ¢, is the Rosenbluth potential.
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0.25 T T T T T T T T T

0.2

0.05

Fig. 3.1 Shown is the Chandrasekhar function (3.35) in the interval [0, 5]

Solution The Maxwell-Boltzmann distribution function is given by

f ( ) mp 3/2 mbv2 np U2
V) =n exp| — = exXxp| ——~
b b 27[kBTb P ZkBTb 7'[3/21)% P U%—

where we used vr = +/2kgT,/myp. The starting point is the differential equa-
tion (3.37). We multiply this equation by v? and integrate with respect to v,

d Ay B
/% (UZW) dv = /vsz(v)dv. (3.39)

Substituting f;, on the right-hand side by the Maxwell-Boltzmann distribution
function (3.38) and executing the integral on the left-hand side we find (after
dividing by v?)

(3.38)

8¢b_ ’ _ np 1 2 U2
a—y:d)(v)—mﬁ/v exp —U—% dv.

Now, we substitute v = xv and obtain

1
¢'(x) = # / x* exp [—x*] dx.

2,2 22
V7 X
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Using integration by parts we obtain

= e LIV X e
¢(x)_27r3/2kBTbx2|: A }

where f(x) is the error function. With f'(x) = xexp[—x?]/2 being the derivative of
the error function (3.36), we can rewrite this expression as

npmy,  f(x) — xf'(x) _ M
ArkgT), 2x2 dmkpT),

¢'(v) = G(x),

where we used the definition of the Chandrasekhar function (3.35).

Problem 3.9 By using the definitions

ab

2
V() = — 2y w), W =2 )

with the characteristic length L% given by Eq. (3.31) and the relation Vg Yy = ¢p in
spherical velocity-space coordinates, derive the collision frequencies

_ f(xb) G(xp) and v””(v) — 2, G();b),
x X

a a

ab(v)

where G(x,) is the Chandrasekhar function (3.35) and

_ mgiqyIn A
Vab = — 5 5 =

2203
dme*mgvy,

Solution

A. We start with the definition for v”” (v) and obtain

2L“b ny 2L d
W) = =S ) = ZE 2 F ) — Gl
where we used the definition ¥, (v) = —n,/87 [f(x5) — G(xp)], see [5]. By
using v = xv7, we find d/dv = (1/vg,)d/dx, and we can substitute
ab
ab my L 1 d B (xb) I ()
Vi) = 4w v2 vy dx [f( ») % 2xp
_ np Lab 1
4 V2 vp

« [ F) - 2xif /(xb)4;44th (x) 4 2 ”(x;sz 2f (xb):|
b
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In the first step we substituted the Chandrasekhar function G(x;) by Eq. (3.35).
In the last step we calculated the derivative of the expression in squared brackets.
By simplifying we obtain

1’||b( v) =

ny L 1 o )+f'/(xb) fCo)  f(x)
47 v2 vy Xp x ]
Since " (xp) = —2x,f" (xp), see Eq. (3.36), we find that the first two terms in the

square brackets cancel. We obtain then

vﬁ‘b(v) =

mLr 12 [JM} ny L
47

= 2——G
47 v2 v Xp 2x7 ().

With v = x,vz, and the definition of L% (3.31) we find

2
a 1 G
v (v) = 2— (M) In A——G(xp) = 200p—o (x") (3.40)
ENtg 'x vTa a
B. Let us now consider now vy, b(v) with
vy (v) = (V) = —— [f(xb) G(xp)] .

where we used again the definition ¥, (v) = —n,/87 [f(x5) — G(xp)]. With v =
XaV1, and the definition of L% (3.31) we find

3 3
xa

“b(v) = :_:[ (w) In A— 1 f(xp) — G(xp) _ quf(Xb) G(xb)

a UTa Xy

3.6 Collision Operator for Fast Ions

Problem 3.10 Suppose that energetic particles are introduced as an isotropic
distribution with speed U at arate 7 per unit volume. Since the energetic particles are
isotropically distributed in velocity space, the kinetic equation may be expressed as

fa

ar

8(v—U)

3.41
4 U? ( )

0
T gy L0 U L] +
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Subject to the boundary condition f,(v > U) = 0, show that the steady-state
energetic particle distribution function is given by

fa(v) = e forv < U.
4 (

v +vd)
(Hint: Choose appropriate integration limits a and b, so that the velocity of the

energetic particles U lies in the interval [a, b].)

Solution In the steady state case we have df,/dt = 0. In this case Eq.(3.41)
becomes an ordinary differential equation,

d \
=0+ ) )] = —#TUZUZS(U —0).

Integrating this expression gives

o d 3 3 l l Nts /voo 2
— (VP + ) )dY = — V48V = U)dv'.
/; dv’( ‘)f( ) 4z U? J, ( )
We changed the integration variable from v — v’, since we want to denote the lower
integration limit with v. The integration limits are then chosen in such a way that
v < U < Voo. We can now easily integrate the right-hand side and obtain U?. For
the left-hand side we integrate by parts and obtain
3 3 3 3 _ %

(Uoo + Uc)fa(voo) - (U + Uc)fa(v) = _E-
Since vso > U, it follows f, (vs) = 0 due to the boundary condition. Thus, we
obtain

fa(v) = % forv < U.
4 (

v +vd)

3.7 Transport Equations for a Collisional Electron-Proton
Plasma

By considering a plasma comprising electron and protons only we may
develop a transport theory in the presence of proton-proton, electron-proton,
and electron-electron collisions. Since the electrons do not collide with
a stationary background, we need to transform the kinetic equation for
each species a to a coordinate frame moving with the mean or bulk flow
velocity u,(r, t) of each species. This requires the coordinate transformation

(continued)
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(x,v,t) = (x,c4,1), where ¢, = v — u,. The dominant time scales are those
associated with the collision frequency and the gyrofrequency. For electrons,
we can order the kinetic equation as (see [5])

Cee(fe)+ (fe)+(—ceXB) Cefez%+ue-er +Ce'er

e , d 8uek af, n
_[Z,E+(at+"e ) e] Vefeo — C,,(fe),

0x; Ocex

where the higher order correction to the collision operator has been included
on the right-hand side because it acts more slowly than the leading order term.

Following the Chapman-Enskog expansion procedure (see also Sect. 2.4),
we solve this equation by expanding the distribution function as f, = f.o +
fe1 + . ... To the lowest order, the left-hand side must vanish, which requires
the distribution function to be a Maxwell-Boltzmann distribution at rest in the
moving frame (see also Eq. (2.36) in Sect. 2.3)

~ m, \*2 me 5\ B2 .
Jo=n\ o) P\ ) Tre\s) ¢

with 8 = m,/2kT,. On using the zeroth order solution on the right-hand side
we obtain an equation for the next order solution f,;,

e

Cee(fEI) +C (fel) + (—'U X B) vfel = (% +u, - V) lnn,,feo

aF (,31)2 = %) (2 +ue-V) InkT,feo + v - V Innefeo

ot
+ ,sz—E v - VInkT,f, T 2+u V| u.lf
2 <0 kT m, ot ¢ ‘|’
MeV;j Vg 17 mev - (ue )
: p——— £ 3.42
KT, or, fe0 + Vep kT, fO ( )

where, for notational convenience, we have written v for c,. It is convenient
to make use of the convective derivative (see also Eq. (2.48) in Problem 2.10),

D ad
— = — - V. .
Di - o +u, (3.43)

Note that the last term on the right hand side of Eq.(3.42), the term
proportional to v,,, corresponds to —C(_fp (see [5]). By pulling this term to

(continued)
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the left hand side and by using Ce,(fe1) = + Cep, we obtain

Cee(feor) + Cop(for) + (—v XB) Vofor = Dlnne 5

e

3\ DInkT, 3
aF (,31)2—5) 1 “foo + v Vinngfo + (,sz—i)v-Vlnkqueo

) e Du, M,V Uy Buek
.| —F' 2 4 2 3.44
t T [m T }f" kT, o (344)

Also note that we used a Chapman-Enskog expansion to derive Eq. (3.44),
which gives the following constraints for the first order correction f,; to the
Maxwell-Boltzmann distribution f:

/fel v =0 /vfel v =0 /vzfel d*v = 0. (3.45)

SOt o 2 _ .2 2 2 _ 2
The velocity is given by v= = v, + vy +v; = > v;. We recall from
Problem 2.12 that

o0
/ e P dx = 0 forn=1,3,5,... (3.46)
—00

For even functions under the integral we have

[ovue s [remaif

o 3 15J_

4 —ﬁx 6 _—PBx*

/ dx = 1B / x’e dx = /37/2 . (3.47)
—00 —00

In the following we will make frequent use of

B 3/2 .
/ foo d°v =n, (—) / e P By =n, (3.48)
T
3/2
/ Voo d*v = n, (S) / v2e PV Py = ;—ﬂ (3.49)

4 3 B = 4 2 13 3n,
/UifeO d’v =n, (;) /Ui E_ﬂv d’v = 4—/32, (3.50)

where d°v = dv;dv;dvi and the integration is taken from —oo to oco.
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Problem 3.11 Show that integrating Eq.(3.44) over velocity space yields the
continuity equation

on,
ot

+V. (neue) .

Solution Starting with Eq. (3.44) we take the zeroth moment, i.e., we integrate
this equation with respect to velocity v. For convenience we consider each term
separately.

A. The first term on the left-hand side is given by

/ Coefu)d®s = 0,

since the collision operator for particles of the same species has to satisfy this
condition. See also Eq. (3.5a) in Sect. 3.1 and compare with Sect. 4.1 in [5].
B. The second term on the left-hand side is

/Cep(fd)d3v = Oa

since the collision operator for electron-ion collisions has to satisfy this relation.
Compare with Eq. (3.19a) in Problem 3.5. See also Sect. 4.1 in [5].
C. The third term on the left-hand side gives

ofe
/(v X B) - Vyfer v = /dv,-dvjdvke,-jkvak%
) v;

:0,

where we neglected the constant e¢/m,. Note that i, j, k are mutually distinct. In
the first step we used Einstein’s summation convention (summation over i), and
expressed the crossproduct by (v x B); = €;;v;B, where € is the Levi-Civita
tensor. In the second step we integrated by parts, where the first term vanishes
because any physical distribution function f vanishes for v; = fco. The second
term on the right-hand side is zero, since By does not depend on the velocity
and dv;/dv; = 0 because i # j, or, in other words, the €;; tensor is zero for
repeated indices. As a vector description one can also write V,, - (v xB) = 0
(see also Problem 3.1 A, the derivation of the zeroth moment of the Fokker-
Planck equation).
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D. The first term on the right-hand side is given by (using the convective derivative)

dlnn, on,
(%—}—ue'vmne)/feod%: ;t-i-ue-Vne,

where we used Eq. (3.48) and dInn,/dt = (1/n,)0dn,/ot.
E. The second term on the right-hand side is given by

/ (:31)2 - ;)feo d’v =8 / Voo d’v — % /feo d*v

e N, N, 3ne_
=5+ 35+ 35) -7 =0

where we neglected the convective derivative D Ink7T,/Dt, and used Eq. (3.49)
with v? = v? + v}z, + v? for the evaluation of the integrals.
F. For the third, fourth, and fifth term on the right-hand side we find

/|:v.Vlnne+ (,31)2— %) v-VInkT,

me

e Du
| —F V|t dv = 0.
T (m D )}fo v

The integral is zero, since the function under the integral is odd in v, see
Eq. (3.46).
G. For the sixth term on the right-hand side we find for j = k,

<

Outej m, ) oue; me N,
P — iJe d3 == - ~, = ev *Ue,
or; kT, /Uffo T k2 "

where we used 8 = m,/2kT,. Obviously, for j # k the integral is zero.

By adding up all results we find the continuity equation

on, on,
a—nt—i—ue'Vne—i—neV'ue:%—}—V-(neue)zo,

which shows that the convective derivative can be replaced by

Dlnn,

=-V-u,. 351
D y G0
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Problem 3.12 Show that the first moment of Eq.(3.44) yields the momentum
equation (3.16) from Problem 3.2 without the viscous term (the term including the
viscosity tensor ), and that

E R,—V (nkT,
(%+ue.v)ue+e _ R = V(nekTe) (3.52)

me Mele

Solution In this case we multiply Eq. (3.44) with v and integrate with respect to
v. For simplicity we consider here only the i-th component of the vector, i.e., v;. We
also use the results from the previous problem.

A. The first term on the left-hand side is given by

/viCee(fel)d3v =0,

since the collision operator for particles of the same species has to satisfy
this condition. See also Eq.(3.5b) in Sect. 3.1 and compare with the previous
Problem 3.11!

B. The second term on the left-hand side is given by

R,
/vCe,,(fel) v ===,
m

e

See Eq.(3.7) in Sect. 3.1 and compare with Sect. 4.1 in [5].
C. The third term on the left-hand side is given by

e e fe1
3 el ;3
_/Ui [(U XB) . VUfEI]d v = _/Uielmnvan d v,
me me Uy
where we used (v xB); = €V,B, and Einstein’s summation conven-
tion, i.e., summation over index /. In the following we consider the cases

i =m,i = ni=1L

e Fori = m we have

B, ofe
elme dvv / dvn/ dv; el
8vz

B, _
=elme / dvv/ dv, [fa]V=EZ = 0,
me J— —o0

e

since any physical distribution function has to vanish as v; - £o0.
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* Fori = n we have similarly

€mi "/ dvmvm/ dviv, dvz ¢
Me J—oo —00 aUl

@Bn o o V=400
= €lmi dvy, vy dv;v; [ﬂl]vl=—m =0.
—00 —

e oo

e Fori = [, however, we find

B, e
eimne dvmvm/ dvn/ dvz Vi fl

i

B o0
- Glmne / dv, vy, / dv,, I:(felv,)_oo / dv‘fel:|
me —00 —0o0 —00

eB, 3
d’v vyfe =0,

e

= —€imn

where we used (f,1v,)%%,, = 0 in the second line and relation (3.45) in the
last line.

D. The first term on the right-hand side is given by

Inn,
(3 gtn +ue-Vlnn6)/vg‘eo d*v =0,

since the function under the integral is odd with respect to v.
E. The second term on right-hand side is given by

DInkT, 3
?)t / (ﬂvz—z) Vifeo v =0,

since the function under the integral is odd with respect to v, and where we again
used the convective derivative.
F. The third term on right-hand side is given by

dlnn,

/vi [v-Vinnf.o v = /vikaeo o,

where we used [v-VInn,] = vdInn,/dr, and where we used Einstein’s
summation convention, i.e., summation over index k. For i # k this integral
is zero. For i = k we have

1 on,

1 ane 2 3 kTe
“fod'v=— = Vn,l:,
n, or; vifeo d’v 2B or; M, [Vl

/vi [v-Vinnf.o v =
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where we used Eq. (3.49). Note that we do not sum over i, since we consider the
i-th component of the vector v. It is rather that the summation over k contributes
only if k = i, i.e., all terms of the summation over k are zero, except the term
that has the same index as the vector component.

G. The fourth term is given by

/ v; (,31)2 - %) [v-VInkT,]f.o d*v
3 dInkT,
= /Ui (,31)2 — E) Uk o foo d*v

1T, , 3
= i - A5 e d3 )
T, ory /v o ('Bv 2)f0 0

where [v - VInkT,] = vd1InkT,/0r; and where we used Einstein’s summation
convention, i.e., summation over k. Note that d Ink7,/dr, = 1/T,0T,/0r is
independent of v and can be pulled in front of the integral. With v? = v? + vyz. +
vz2 this integral is obviously zero for i # k, since the function under the integral
is odd in v. The integral only contributes for i = k. For convenience we consider
both terms in brackets separately. The first term gives

oT, o7,
%8_;’, / v dPv = % Em ///vf (v7 + vj2 + v2) foo dvidv;dvy

B dT, [ 3 n, e ne 5 n
_ b oLy Sne _ 2" T
T.or |ap Tap T ap [VAT)

2 m,
where we used Eqgs. (3.47)-(3.50). The Boltzmann constant £ was pulled under
the derivative. The second term in the brackets gives

31 07T,

2Te 8r,~

3107, n 3n
2 3 e e e
20 d*v = —= ——2 2% = —Z_2[VkT,], .
Vifeo &V 27T, or; 28 2me[ ]

so that we eventually get

/vi (ﬂvz - %) [v-VInT,]fo d*v = - [VKT,],
m

e

H. The fifth term is given by

e eE’+Due /v'ka Bo="T¢4 /v»ka d*v
kTe I~ Dt . i e0 = kTe k i e0 P
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where the vector A corresponds to the expression in the brackets,

A= [iE’ + (E tu,- V) ue} , (3.53)

m, ot

so that the k-th component is given by Ay. For i # k the integral is zero, since
the integral is odd in v. For i = k we find

meA-/#f Po=20p2 _Am
kTe i iJe0 - kTe 1213 — Ajlle.

I. The sixth term gives

auek me
orj kT,

/v,-vjkaeo $Pv=0

for all combinations of i, j, k, since the integral is odd in v.

By adding up all results we find

R, kT, e d
= = Vn, + n—VkTe + [iE’ + (— +u,- V) ue:| Te.
me me me m, ot

The first and second term on the right-hand side can be simplified to V (n.kT,) and
we find Eq. (3.52).

Problem 3.13 Show that the second moment of Eq.(3.44) yields the energy
equation (3.17) without the heat conduction (the term including V - ¢), viscous
heating (7 : Vu), and energy exchange terms (Q), and hence that

3/0
— = +wu,-V|InkT, +V -u, =0.
2\ ot

Solution Here we multiply Eq. (3.44) with v? and integrate with respect to v.
We consider each term separately.

A. The first term on the left-hand side is given by

/ 22Coelfur)dv = O,

since the collision operator for particles of the same species has to satisfy
this condition. See also Eq. (3.5¢c) in Sect.3.1 and compare with the previous
Problem 3.11!
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B. The second term of the left-hand side is given by

/Uzcep(fd) d3U = 0.

The scattering between electrons and protons is perfectly elastic, therefore, no
transfer of momentum or energy is possible. Thus, the terms O and R in Eq. (3.8)
are zero.

C. The third term on the left-hand side is given by

i/1}2(v X B) - aﬂld3
m, v

[felv (va) /fel[2v (va)+v—(va)i|—0

where we used integration by parts. The term [ forv? (v x B)] vanishes since the

distribution function goes to zero for v — £00. The term v-(v x B) is zero since

v L (v x B). The last term vanishes for the same reasons as in Problem 3.11.
D. The first term on the right-hand side is given by

dlnn, DlInn,
( +ue-V1nne)/v2feo dv=—- /(Uf+vf+vf)feo d*v

at
Dlnn,
il 3/v§fe0 .

Dt

With Eq. (3.49) we find

DlInn, 3n.Dlnn, 3n,
Dt 28 Dt 2,3

where the convective derivative D Inn,/Dt was be replaced by —V - u,.
E. The second term on the right-hand side is given by

DInT, DlnTe
Dr /(,3 2——) Vo0 dv = “Dr (,3 ‘- )feod3

With v? = (v + v} + v?) we find

4 _ 4 4 4 2.2 2.2 2.2
vt = vy + vy + v+ 2uvp + 2vpv; + 2u50;

Substituting this expression into the equation we find

DInT,
o /(ﬁ 2__) 2fe0d3
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DInT, 3
= Dnt /(3,3v,f4+6,3v,-2v]-2—§v2)ﬁ0d3v

_DlnTe 9ne+6ne 9n, _3neDlnTe
Dt \4B8 4B 4B) 2B Dt ’

where i # j.
F. For the third, fourth, and fifth term we find

3 e
/feovz [[v -Vinn,] + (/3# — E) [v-VInT,] + ’;—lA . v:| v =0,

where we again used the vector A to simplify the expression. All terms vanish
since the integrand is an odd function with respect to v.
G. The sixth term on the right-hand side gives

e, M, 2 3
— | vivufeo d’v =0
or; T, jOkfe0

for j # k, since the integrand is an odd function in v. For j = k we find

a“ej me 2.2 3 auej me 4 2 2 2 2
—— [ vV fodV = —— v; + viv; + vivy) fo dvidvgdv
a;}. T, Jfo ar] T, (] j Yk J l)fO jaAvrav]
_ Ougim, (3 n, Ln,\  Ougme5ne
= 3i’j T, 4[32 2[32 - Brj T, 4[32,

where the integration over vjzv,% gives the same result as the integration over
vjzvlz. With 8 = m, /2T, we find

uej m, 2 2 3 5n,
I i 2 dPv = 22V -u,.
o, T, /v vjfo v 2B u
By summarizing all results we find

3n, +3neDlnTe 5 n, 0
- - _— ‘u, =0,

28 28 Dt 28

and after simplification we obtain

3DInT,
2 Dt

3/0
+Vu=-—4+u.-V|InT,+V-u,=0.
2 \ ot

Problem 3.14 Eliminate the time derivatives in (3.42) using the results from the
Exercises above to derive Eq. (3.57).
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Solution For convenience, let us summarize the results from Problems 3.11—
3.13. From the zeroth moment we find

Dlnn, ad
Dntn - (8_t +ue'v) Inn, = -V -u,,

which shows that the convective derivative D Inn,/Dt can be replaced by —V - u,.
The first moment gives

e (8
—E + | tu-

V) e lte ' (‘leK] e)
me 3t

NeM,
and the second moment

DInkT, 0 2
== e V| InkT,) = —=V - u,.
Dt (8t+u )n( ) 3 "

Substituting these results into Eq. (3.44) we can eliminate all time derivatives and
obtain

e

me

CeE(fel) + Cei(fel) + ( v XB) . vael =-V. uefeO

— (,BUZ — %) 2y. Uofoo + v - Vinngf + (,BUZ — %) v - VInkT,)fs0

3
mev R, — V(n.kT,) MeV; Vg e mev - (U, — u;)
: feo + : fe0 + Vei————fe0.

kT, NN, kT, Or kT,

The first term on the right hand side cancels with the second part of the second term.
To simplify we also expand the third term on the right-hand side (v - V In n.f,p) and
the expression V(n.T,) in the fifth term. We obtain

Colfor) + Calfor) + (miv < B) Vifa = 2B -

e

3
+ 2 Vo + (/3# - E) v-VIn(kT,)fo — % VT — ~ - Voo
ne e ne

v R, meV;Vy O, mev - (U, — u;
N B Ay Vei¥feo- (3.54)

T kT, or; KT,

The second and the fifth term on the right-hand side cancel each other. By writing
VT,./T., = VIn(kT,) in the fourth term we find that the third and the fourth term
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can be combined. By rearranging the terms on the right-hand side we find

ee(fel) + Cet(fel) + (—I) X B) vfel = (IBUZ - ;) V- Vln(kTe)fé’O

Re eUe — U; AU ae 2
+v~[ me( )i|fe MV, Vg Mkfeo—gﬁvzv'uefeo-

+v
KT, = KT, kT, Or;
The last two terms can be expressed through the rate-of-strain tensor Wy by

2

MV Vg Oltek m 5 m v
< _ Vou, = o — 280 | Wi 3.55
KT, or, kL.~ T T, [U’U" 3 "k} ik (3.53)

where we neglected the distribution function f,y and substituted 8 = m,/2kT,. The
rate-of-strain tensor Wj is given by

au, auk

W.
= ory ar,

v .Sy (3.56)

To show this identity we substitute the rate-of-strain tensor in the expression on the
right-hand side and obtain

m ’U2 m 3u- ablk
KT, (vak - ?Sjk) Vij = _ZkTe I:Ujvka—r]j( + vjvka_}f, vjvk (V u,) SJk

v? Ouj v2 o Qw202

BER TR

(SjkV . uei| .
Note that we use Einstein’s summation convention and implicitly sum over the
indices j and k. Therefore, we can change the indices in the first term (the summation
does not change) and combine the first and second term. The third term contributes
only for j = k&, so that v,vk = 2 Since we sum over that index we obtain
=Y vj2 = v + v + v2. The fourth and the fifth term also contribute only
forj = k, and W1th > au, / Brj = V . u we can rewrite both terms through the dot
product. The last term also contributes only for j = k. Since we have to sum this
term also over x, y, z we obtain a factor 3.

m UZ
e, \ Vv~ 30 | Wi

m ouy, v? v? 20?2
= — [ 2vjvs— — —V e V- e——=V-u.+3—V-u,|.
KT, [ VjUk or, v 3 u u 3 u, + 9 u
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The last four terms can be combined to
m

) i = = [ 2y
— | vjvr — = kK = — | 2vjve— — vV u,|.
uT, \ 7T 3T ke, [T a3

After multiplying the squared brackets with the factor 1/2 we obtain the exact same
expression as in Eq. (3.55), and, therefore,

5
Cee(fe1) + Cei(fe1) + (miv X B) “Vifer = (/31)2 - 5) v - VIn(kTe)feo
R, me(ue _ui) m v?
: § . V- =S | Wi (357
v [krgng Ve }fo * o, (v’vk 3 ) e GID

3.8 Application 1: Transport Perpendicular to a Mean
Magnetic Field

One can also consider an alternative approach to the transport of particles,
momentum and energy across a mean magnetic field in a plasma. By
approximating the collision operator by the BGK operator C(f) = v(fo —f),
the kinetic equation can be expressed in components as

0 9 i} F;
ai: o (@ efl+ 5 [(% + € + Cj)Qk)f]

—v(ho—1), (3.58)

where ¢ = v — u is the particle velocity relative to the bulk velocity, and
£2; = eBy/m the particle gyrofrequency. Note that ¢ = ¢(x, ¢) and u(x, ¢) are
functions of time and space.

By taking the c;c; moment of the kinetic equation one can derive an
evolution equation (3.63) for the pressure tensor Pj,, where the pressure
tensor and the conductive heat flux are defined as

Py, = m/clcmf dv Gitm = m/ciclcmfd3v.
For the following calculations we will make frequent use of the relation

/cfd3u = /(vi—ui)fd3v = /vifd3v—ui/fd3v

= nu; —u;n = 0. (3.59)
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Problem 3.15 By taking the cjcx-moment of the kinetic equation, derive the
evolution equation (3.63) for the pressure tensor Pj,.

Solution We start by multiplying Eq. (3.58) with mass m and c;c,, and integrate
then with respect to v. Considering each term each term separately we find:

A. The first term on the left hand side is given by

/ mcicy, aicd3 v
ot

= m/ %(fclcm) d*v —m/f%(czcm) d*v

_ 3 3 36‘1 3 acm 3
—Em/(fclcm)dv—m/fcmadv—m/fczwdv

Py,
T

In the first step we used the chain rule to transform the function under the
integral. Note that (as stated above) the random velocities ¢; and the bulk
velocity u; depend on time. In the second step we used dc; /0t = —du,/dt, since
v; is an independent variable, and does, therefore, not depend on time. dug/dt
can then be pulled in front of the integral (because u; is independent of v,). We
are left with integrals of the form given in Eq. (3.59), which are zero. Only the
first term remains.

B. For the second term on the left-hand side let us consider first the following
derivative

aclcm(ui +c)f — cic 3(“1 +a)f

+( L+Cz)f|:cla +CmaCl:|

ox; - 0x; 0x; 0x;
= Clcmw (“L + Cz)f c— BM + cp— 3141 .
a-xi a ax,'

In the first step we used the chain rule twice. In the second step we used
¢ = v —u, where v is an independent variable (does not depend on the spatial
coordinate). The second term on the left-hand side of Eq.(3.58) can then be
written as

/mczcm [(u; + c))f]d*v = /E?clc,,,(g+c,-)fd3v

+m/m+avP +mwﬂdv
3xi
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In the first integral on the right-hand side we can pull out the derivative with
respect to x;, so that

m/ darem(ui +cf 5 EM/Clcm(ui +e)fd’v
Bxi axi

0
= o [UiPim + Gim] »
3xi
where we pulled out u; in the first term and where we used the definitions for
the pressure tensor and the conductive heat flux. Therefore, the second term in
the integral above can be rewritten as

/(”z"‘ct)fl: l_+Cmg :|d3

:mui/f Clau_m_'_cm% d3U +m/cf Claﬂﬂ—cm% d3U
Ox; ox; 0x;

Xi
8x,~

_ 8umP 4 aulp
T Oy i ax; "

Note that the first term in the second line is zero, since the derivative du,/dx;
can be pulled in front of the integral and we are left with integrals of the form
given in Eq. (3.59). The second term in the second line yields the results for the
pressure tensor. By combining both results we obtain

d o,
/ meicmy - [(ul + c)fld’c = [4:Pim + Gitm] + ——Pit + ——Pim.
Bxi ox; ox;

C. The first part of the third term in Eq. (3.58) can be written as

e—Eim/czcma—fd%v = eE /afclcmd%—/faclﬂd% ,
m v m 8vi Bvi

where we integrated by parts. Note that the first term on the right-hand side
vanishes for all possible combinations of I, m, i, since the distribution function
vanishes for v; = £o00. In the second integral we rewrite the derivative as

dcicm

Bvi

= C18im + cmit, (3.60)
where we again used the chain rule with ¢; = v; — u;. We obtain then

E; d E;
e—m/clcma—fd3v = —e—m /f (¢i8im + cmbit) v = 0. (3.61)
m

m Vi
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This expression is zero for both cases [ # m (because the delta function is zero),
and / = m (because of Eq. (3.59)).

D. For the second part of the third term in Eq.(3.58) we consider both terms
separately. We begin with

)
eijkuijm/czcma—fid% =0,
which vanishes for the same reasons as we have shown under part C of this
Problem. Note that u; and §2; do not depend on the velocity and can therefore
be pulled in front of the derivative and the integral.
E. The next part of the third term in Eq. (3.58) is then given by

ac; a
eijk[?km/czcmac—‘lfd% = eiik[?km/czcmcja—fd3v.
i ‘ V;

Note that the € tensor is zero for i = j. Let us consider now the following
derivative

ofcicicm _ af dejcicm
dv; c1emCj av; +f av;

a
= CZCija—{; +ij [Clgim + CmSil] s

where we used the relation (3.60) and again the fact that the € tensor is zero for

i = j. With that we can rewrite the expression above as

deif

3vi
dfcicicm

= elijkm |:/ fc;id?)v — /fC] [Clgim + CmSil] d3Ui| .

v;

€jixS2im / CiCm d’c

The first term on the right hand side is zero for any combination of /, m, i and j,
so that we are left with

ac;
Eijkgkm/CICma—lfd3v = _GijkAka /ij [Clgim + CmSil] dSU.
v;
We have to distinguish the following cases:
e [ # m: Here we have to distinguish between m = i and / = i.

A. Forl = i we have

oc:
Gijk.ka/CICmaideU

Vi

—€ljk .ka /ijCmd3 v

—€5jk S2kPj,
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and likewise

B.m=i
dc;
Eijk.ka/CICma—lfd3U = —ijk.ka /ijCld3U
V;
= —ijk.QkPﬂ.
Both results have to be added up to obtain
ac;
eijkﬂkm/clcm%d?’v = —$ [Gljkij + ijkpﬂ] . (3.62)

e | = m: In this case we have

oc:
eiikaWl/Cszaidev = —2e;$2m /fcjcl&ld%

1

= —Zéijk.ka /ijCid?)v = —Zéijk.QkPji.

This result can also be derived from Eq. (3.62) by setting [ = m = i.

We summarize that
acif
V3
€k §2im / clcmﬁd v =—5% [ézjkpjm + ijkle] ,
i

which is valid for = m and [ # m.
F. The collision term on the right hand side becomes

v / ciem(fo —f)d3v =y / clcmf0d3v —v / clcmfd3v = v (PSim — Pm) -

Here fj denotes the Maxwellian distribution. Therefore, the first integral on the
right-hand side vanishes for [ # m, since we have an odd function in ¢ under the
integral. The first term contributes then only for [ = m, where p is the pressure
(see [5]). Compare also with Problem 2.8 part E. For the second term we use the
definition for the pressure tensor Py, given above.

By combining all results we obtain the evolution equation for the pressure tensor

Pin | O P+ qun] + 2mp, 4 M p
o, T 5. Wilim ilm - L™ 5 Lim
ot ox; ; 9 ox; ! ox;
— 2 [€Pim + €mixPit] = v (PSim — Pim) - (3.63)

Problem 3.16 Complete the steps in deriving the Kaufmann representation for S,
and the K-operator.
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Solution Here we begin with the result of the preceding problem, Eq. (3.63).
By invoking Braginskii’s short-mean-free-path orderings to the pressure tensor
evolution equation we find that terms proportional to v and 2 are larger than
all other terms, i.e., they are dominating. That means that, to lowest order, the
distribution function becomes Maxwellian, f = f;, so that

Py, = P81m qilm = 0.

For the next order we substitute these expressions in the small terms of Eq. (3.63),
i.e., terms that are not proportional to v and £2. In this case we obtain

ap  dup o, duy
|:8t+ 8x,-:| I +(8x1 +8xm P+ Vv (P — PSim)

= 2 [€Pjm + €mixPit] . (3.64)
where we pulled the term proportional to §2 to the right-hand side and the term
proportional to v to the left-hand side (note that we changed the order to compensate

the sign). We denote the left hand side as Sj,, and the right hand side as K(P)£2, so
that Eq. (3.64) can be written as

S
K(P) = &.

Problem 3.17 Show that for a Maxwell-Boltzmann distribution,

5
Hy = / %vzvivjfd?’v = z—pkBT&'j.
m

Solution The Maxwell-Boltzmann distribution is given by (see also Eq. (3.38)
in Problem 3.8)

3/2
fv) =n (g) e where f = — (3.65)

andv? = vv; = Y viz. We evaluate the integral for the two cases: i # jand i = j.

A. The case i # j: Here the integral is zero since we have odd functions of v under
the integral, see also Eq. (3.46),

/ %vzvivj}‘d% =0.
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B. The case i = j: Here the integral takes the form

Hi = %/Uzvizfﬂpv = %/(vf+vf+v,f) v dv
n dr 3 2,20 13 20 13
E[/vifdv—i-/vjv[fdv—}-/vkvfd :|
B\ ) ,
(_) [/ vie d3v+/v, vie P d3v+/v£v2e—ﬂv d3v}
7
,3 3/2 3]T3/2 17_[3/2 1]{3/2
(3) [+ i3 + 5]
m5 1

Y/ —

2462

|3

n

|3

n

where we used the integrals from Eq. (3.47). Substituting 8 we obtain

5 4k2 T2 5 5
m = —nsz2 = —pkpT,
24 m2  2m 2m

i — =n_—
where we used p = nkgT. It follows for the general expression that

5
H,‘j = %pkBT&'j.
3.9 Application 2: The Equations of Magnetohydrodynamics

The ideal MHD equations are given by

ou
p(g +u~Vu) =_VP+JxB (MHD-2)
B
aa_t =V x (u x B) (MHD-3)
V xB = uoJ (MHD-4)

(continued)
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V.B=0 (MHD-5)
P

oy Hu VP yPY u=0, (MHD-6)

where p is the mass density, u the center-of-flow velocity, J the current
density, P the total pressure, B the magnetic field, and y the adiabatic index.

Problem 3.18 Linearize the ideal MHD equations with p = py = const., B =
Boz + 6By, u = $uy, J = §Jx. Seek solutions of the linearized 1D MHD equations
in the form exp [i(w? — kz)], where w is the wave frequency and k the corresponding
wave number and derive the Alfvén wave dispersion relation.

Solution We have

0 0 8J
0= po B =|4B u=|éu J=10
By 0 0

A. Since the density is constant we find for the first equation (MHD-1),

p088_u =0, (3.66)
dy

where we already evaluated the dot product. The time derivative vanishes
because the density p = pp is constant.
B. The second equation (MHD-2) becomes

9 0 8J 0 0
Lo & oul = 0 X |éB| = —308.1 s
0 0 By 8J6B

where we neglected the term u - Vu = §ud,du = O(8u?), since it is of second
order in the velocity turbulence. Note also that due to the constant density there
is no pressure gradient, i.e., VP = 0. We also find 6J6B = 0 (last component of
the vector). From the second component we obtain

d8u
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C. The third equation (MHD-3) becomes

5 (0 0 0 0
o 8B) = Vx| (su]x|6B]| =] B3
By 0 By —BO%%*

The time derivation of By is zero and from Eq. (3.66) we know that d§u/dy = 0.
From the second component we obtain the single equation

98B Su
— =By—. 3.68
ot 073z ( )

D. The fourth equation (MHD-4) becomes

0 P _ 28 87
Vx|6B| = —% =uo| O
BO 5B 0

ox

From the first component we find

08B
—— = wodJ, (3.69)
dz
where dBy/dy = 0, since By = const.
E. The fifth equation (MHD-5) becomes
0
d6B
dy
By

F. The sixth equation (MHD-6) becomes then

0
P P )
— 4+ yPV-[Su|=0 = —+yP—u=0.
ot 0 ot dy

From Eq. (3.66) we know that ddu/dy = 0, so that dP/dr = 0.

The set of linearized 1D ideal MHD equations can then be summarized as

u_ 0B _ 08 wB_
Pog; = Ho o % oz P
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By combining Eqgs. (3.67) and (3.69) we obtain with Eq. (3.68) the following set of
equations

ddu By d6B and B B déu (3.70)
pOBt_,uOBZ a  Voar '
We are now seeking solutions of the form
§W = §We R,
where W is either 6u or §B. In general we obtain for the derivations
14 '
— = iwd¥ and & = —ikéVY,
ot 0z
so that the set of Egs. (3.70) becomes
: .. Bo : .
polwéu = —ik— 8B and iwéB = —ikBydu. (3.7
Ko
Combining both equations leads to
B} 2 B} B
p0w8u=k2 081,{ = 60_2= 0 UA_Q:ZI: 0 ,
Lo k Hopo k /140 P0

which is the dispersion relation for the Alfvén velocity.

Problem 3.19 For B = Bz, linearize the ideal 1D (say for the x coordinate) MHD
equations about a stationary constant state. Seek solutions of the linearized 1D MHD
equations in the form exp [i(wt — kx)], where w is the wave frequency and k the
corresponding wave number and derive the magnetosonic wave dispersion relation.

Solution To linearize about a constant state we define
0= po+8p B =B, + B u=46u J=46] P =Py + 6P,

where the index 0 describes the time invariant and homogeneous background plasma
at rest, and 8p, B, and Su are small perturbations to the background plasma. Note
that u = du since we linearize about a stationary constant state, hence we have no
background flow. Also, since J = e(nu; +n.u.)/p, we findJ = éJ. The first MHD
equation (MHD-1) becomes

adp
— V-8u =0,
o =+ po u
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where we neglected the term V - §pdu. The second ideal MHD equation (MHD-2)
becomes then

9
pOB—t” 4 VSP = 6] x B, (3.72)

where we again neglected the term u - Vu = §ud,du = O(8u?). The third and fourth
MHD equations (MHD-3) and (MHD-4) cane written as

ag—f = V x (§u x By)
V X 6B = podl. (3.73)

For the divergence free magnetic field and the pressure we find

V-B=0

dsP
W +yP0V-8u =0.

By combining Eqgs. (3.72) and (3.73) we obtain the following set of equations

aép
= oV su=0
or + po u
a8 1
po % L VSP + —Byx (Vx5B) =0
ot Mo
5B
W—VX(SMXBO):O

asp
W‘FJ/P()V'(SM =0.

For the magnetic field and the variations in velocity and pressure, we have

O Sux(xs t)
B = 0 Su = 0 8P = 8P(x.1).
By + 8B (x, 1) 0

Note that all variations depend on the x-coordinate solely! We obtain the 1D set of
equations

adp n 8 u,
ot po ox
ddu, ~ AP By d6B, 0

P T T o

=0




184 3 Collisional Charged Particle Transport in a Magnetized Plasma

08B, 4B du, —0
ot ox

6P du,

o + vPy p =0.

We are seeking solutions of the form
SW = §Wel @),
where ¥ is either §u, §B or §P. In general we obtain for the derivations

BS—W = iws¥ and BS—W = —ikéVY,
ot ox

so that the set of equations can be expressed by

wdp — kpodu, =0 (3.74a)
By

wpoSity — k8P — k—28B, = 0 (3.74b)
Mo

8B, — kBoSuy = 0 (3.74¢)

WP — kyPydu, = 0, (3.74d)

where we divided by the complex number i.

* Alternative 1: By substituting Eqs. (3.74d) and (3.74c) in Eq. (3.74b), we find

P B2
a)25ux—k2u8ux—k2 0
Lo PoMo

where we also divided by po. With v4 = /B3/popo and vy = /yPo/po, it

follows that

Su, = 0,

2 2
C:—Z—vf—vﬁ:O = v’%m:(;:—z:vf—i—vi, (3.75)

where the velocity of the magnetosonic wave is the geometric mean of the sound

speed of the particles and the Alfvén speed, v,,; = /v2 + v3.
e Alternative 2 We may rewrite the set of equations in matrix form as:

o —kpp 0 0 dp

B
0 wpo —k—kﬂ—g | Sux —0
0 —kBy 0 o SP

0 —kyPy o O 3B,
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Now, the determinant of the matrix has to be zero. Developing the determinant
for the first column leads to

B
detM = w [—wpo(a)z) + k(wkyPy) + k—o(a)kBo):| =0.
Ho
Simplifying and dividing by po yields

P B2
detM = o* — 22 Y20 _ 22 20 — ¢,
Po PoMo

With vy = ,/B%/po,uo and vy, = /yPy/po we obtain

2

w
4 _ 27202 2 3 2 _ — 22 2
w ok (vs UA) Uins K2 Uy Uy

where the velocity of the magnetosonic wave is the geometric mean of the sound
speed of the particles and the Alfvén speed, v,,s = /v2 + v3.

Problem 3.20 Derive the frozen-in field equation,

d (B 1 B B
—(—)=—(B-Vu—BV-u)+—V-u=—-Vu
dr \ p P P P

by using the Lagrangian form for the magnetic flux, or induction equation,

dB 0B

— = .VB=B -Vu—BV - 3.76
dt ot tu " " ( )
and the conservation of mass
ap ap dp
iy, = = V. .Vp = — = —pV- 77
o + (pu) o +pVu+u-Vp=0 < 7 oV -u, (3.77)

where we used the convective derivative (see Eq. (3.43) in Chap. 3.7)

Lol hu, (3.78)

which represents the time derivative seen in the local rest frame of the fluid (see also
Eq. (2.48) of Problem 2.10).

Solution We calculate the derivative

d (B\ 1dB Bdp 1 B B
—( )——————p:—(B-Vu—BV-u)+—V-u=—-Vu,
dr p P p

p) pdt p?dt
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where we substituted (3.76) and (3.77) for the convective derivatives with respect to
B and p, respectively.

Problem 3.21 Show, using the kinematic equation of motion for a volume element,
that mass in a fluid element dM = p dV is conserved.

Solution If the mass in a fluid element is constant, then the total time derivative
of dM has to be zero. The time derivative of the mass in a fluid element is given by

d dp d
—(dM —(pdV —dV —(dV).
dt( ) = ( ) = +p dt( )
The kinematic motion of a fluid element dV is given by (see [5])
d
E(dV) =V-.udV, (3.79)

which results from the conservation of mass. Together with expression (3.77),
dp/dt = —pV - u, we find

d
—(dM) = —pV -udV + p¥ -udV =0.

Therefore, the mass in a fluid element is conserved.
Problem 3.22 Show that the momentum of a fluid element (pu)dV is not constant.

Solution The time derivative of the momentum of a fluid element is given by

d \_4 d(pu)
5 @p) = - [(w)dV] = — =dV + pu —(dV)

dp du
=u—dV —dv V-udVv,
u i +p o7 + puV -u

d
= —upV -udV + pd—l:dV + puV -udv,

where we substituted Eq.(3.79) for the derivative of the volume element in the
second step and the time derivative by the convective derivative, dp/dt = —pV - u,
in the third step (see also expression (3.77)). Obviously, the first and last term cancel
each other and we obtain

d
v,

—(p)—pd

Since du/dt # 0, see for example Eq. (MHD-2), we find that the momentum of a
fluid element is not conserved.
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Problem 3.23 Show that the total energy density of a fluid element ¢ = pu?/2 +
P/(y — 1) + B%/2puy is not constant.

Solution Consider the time derivative of the total energy density

d( dv) = d|l 2dv + P av + B dv (3.80)
ar T | 2™ y—1 20 | :
A. The first term is then
L eay du vy Cay® < av)
— —oU = U - — J— _ —_ ) —
dt 2p dt’o 2 dt 2’0dt
d 2
—u- 2 v+ - pdVV u + pdVV -
dt 2
d
:u-7’:pdv¢o, (3.81)

where we used the conservation of mass, Eq.(3.77), to substitute dp/dt and
Eq.(3.79) to substitute the derivative of the volume element. Obviously, the
second and third term cancel; the first term remains, since du/dt # 0.

B. The second term is

y—1

d P 1 dP 1
dv| = Vv
dt

d
— = ———dV+ ——P—(dV)
dt y—1dt y—1
y 1
=——PV.-udV+ ——PdVV -u
y—1 y—1
= —PV -udV (3.82)
where we used dP/dt = —yPV - u, compare with Eq. (MHD-6), and Eq. (3.79)

for the derivative of the fluid element.
C. The last term is given by

(8 1_B dB, B d v
dt | 2po o dt 2 dt
1 B?
=—B-[B-Vu—BV-uldV+—V-udV
Ho 210
1 B?
=—B-(B-Vu)— —V-udV,#0, (3.83)
Mo 210

where we used the induction equation (3.76) for dB/dt and the derivative of the
fluid element (3.79).
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Combining all results we find that the total energy density is not constant,

d
= (eav) #0. (3.84)

3.10 Application 3: MHD Shock Waves

Problem 3.24 Starting from the equation for the shock adiabatic,

0= (M2 —r) | M2, —2 @ !
= —-r —2r
Al Al Vﬁnlr—kl—y(r—l)

) 2r—y(r—1)

— My |:}"—|-1——)/(}’—1)M§1 — r:| tan2 91 (385)

derive the shock polar relation or shock cubic (3.87), by using r = M3,/M3,, and
sec’f; = 1 + tan? 4.

Solution As a starting point we substitute » = M3, /M3, in Eq. (3.85). In doing
so, we consider first the denominator of the fractions occurring in the equation,

2 M2
+l—y(r—1) =4l p1—p(-4—
r (r=1)= M V( )

A2 Miz
— [M3, (1 =) + M3, (1 + )],
MA2

Secondly, we consider the numerator of the fractions,

M, M3 1
oy =28y (M) L e eai)
M,42\2 Mf;z MfZXZ

Also,

With these relations we obtain for Eq. (3.85) the following expression,
M3, a; M3, M3, :|
M;, Vi Ma; M3, (1 —y) + M3, (1 +y)

_ M3 [ M3, (2—y) + M,y 2 A i| tan® ;.
Al —
M3, M LM (1 —y) + M3, (1 + ) M2,

0= 1 o, - 1) [ -
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In the first squared brackets we cancel Mfu in the second term. Assuming that
M3, # 0 and M3, # 0, we multiply the equation by M%, and divide the entire
equation by Mﬁl , obtaining

2 o
2 a; M
0= (5, — )7 [ - 2]
am M (1 —y) + M, (1 +y)
2 M3 (2—y) + M,y , M, 2
M, | — 5 My, — —5~ | tan” 0.
My (1—y) + M1+ y) M3,

Note that each term (in squared brackets) contains M/zﬂ. Under the assumption that
M/zﬂ # 0, we divide this expression by M/zﬂ. We also pull Miz into the second term
with squared brackets,

0=(M,—1) [1 2. ! }
" Vi M3 (1= y) + M3, (1 +y)

_ [ M3, 2—y) + Miyy
M3 (1—y) + M3,(1 +y)

M3, — 1:| tan’ 0;.

Now, multiply the entire equation with the denominator Mf“ 1-y)+ sz(l +7v)
to obtain

2

a
0= (M3, — 1)2 { (M3, (1 =) + Mo(1+ )] - 2‘/;1 }
Anl

—{[M3, 2~ y) + My Mz, — [M3,(1 = y) + M3, (1 + p)]} tan® 6.

By pulling (Mf\2 — 1)2 into the first curly brackets and tan® 6; into the second curly
brackets, we obtain

2
a;
0= (M3, = 1)* [}, (1 = y) + M1+ 9)] = 235 (M3, — 1)’

Anl

— [M3,2 — y) 4+ M3, y] M3, tan® 6,
+ [fol(l —-y)+ Miz(l + y)] tan’ 6.

Now, we need to pull all terms that contain M3, to the left-hand side. For simplicity,
we first expand all squared brackets and obtain

2 2 261% 2
0= M3 (1 =) (M3, = 1)" + M1 +9) (M, = 1)° = 35 (MR, = 1)
Anl
— Mjl 2- )/)Mﬁ2 tan” 6, — Mizy tan’ 6,

+ M3, (1 — y)tan 6; + M3, (1 + y) tan® 6;,
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and then pull the first term of each line to the left-hand side (since they all include
M?)); we obtain

2
- M§1(1 -) (Miz - 1) + Mil(z - V)Mﬁz tan” 6 — Mil(l -) tan” 0,

2
=My, (1+y) (M3, — 1)2 - Z‘fle (M3, —1)

Anl

2

— Miytan® 0, + M2 (1 + y) tan? 6;.

By simplifying this expression we obtain the shock cubic or shock polar relation,
2 2 2 2 2
M sy —1 (MAz — 1) + [(2 —yY)My, — (1 — )/)] tan” 6, (3.86)

a? 2
= [Mgz(l +y)— 2#} (M3, — 1) — M3, [M3,y — (1 4+ y)] tan® 6;.
Anl

Note that on the left-hand side we changed (1 — y) — —(y — 1). Since Vj, is the
Alfvén velocity normal to the shock front we find

1 1 1,
= i g = i sec 0,
Vin V3, cos? 6 Vi

where we used sec @ = 1/ cos 6. We find the shock polar relation
2
M3 = D) (M3, = 1) + [ = ME, — (1= )] an® 6} (3.87)

a? 2
= [Mizﬂ +7) =255 sec® 9} (M3, —1)" — M}, [M3y — (1 + )] tan’ 6.
Al

Problem 3.25 Starting from the shock polar relation (3.86), derive the alternative
form

My, — M3,
_ Z(Miz - 1)(Mi2 - M12+)(M/242 - M12_)
(y =DMz, — D2+ M7, — DA =M [2—y)Mz, — (1 —p)]

by using the relations

2
st =M M tan® 0 = (M7, — 1)(1 — M7.). (3.88)
An

a
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Solution First, we divide Eq. (3.86) by the term in curly brackets, so that

a? 2
(M2, 4+ y) = 25 | (M3, = 1) = M2, [MB,y — (1 + )] tan® 6y

2
VAnl

Mf\l = 5 2 > N
(y—1 (MAz—l) +[(2—y)MA2—(1—y)]tan 0,

Obviously, on substituting tan® #; by relation (3.88) we find that the denominator of
this expression already corresponds to the desired result,

B=—1 (M~ 1)2 +[2-y)M;, — (1 —y)]tan® 6,
= (=1 (M —1) + M3 =11 =M ) [Q— )M — (1= p)].

so that

a> 2
[Ma1 4 7) =235 (M3, = 1) = M3, [y — (1 + )] an
; .

Consider now the numerator. On substituting the relations (3.88), we obtain

2 _
MAl_

[M3,(1 + y) —2M3 M3 ] (M3, — 1)
p
M3, [M3,y — (1 + )] (M3, — 1)(1 —M})
B

2
MAl_

Now we subtract M3, on both sides and obtain

[M3,(1+y) —2M} M} | (M3, — 1)2
B
ML MLy - (L] M7, - DA -ME)  M3,B
E B

2 2 _
My, — My, =

where M3, on the right-hand side has been multiplied with 1 = B/ in order to
calculate the numerator. The numerator of the entire right-hand side can then be
written as

2
o = [Mj(1 +y) —2M7 Mi_] (M3, — 1)
= M3, [M3,y — (1 + )] (M7, — (1= M}_) — M3,B.



192 3 Collisional Charged Particle Transport in a Magnetized Plasma

On substituting B we obtain

a = [M2(1 +y) —2M7 M2_] (M2, — 1) (SP-1)
— M3, [M,y — (1 + )] (M7, — D)(1 - M}) (SP-2)
— My — 1) (M3, — 1) (SP-3)
— MM, = D1 =M [2 = y)Mi, — (1= )] (SP-4)

Combining now (SP-1) and (SP-3) yields
(SP-1) + (SP-3) = 2 (M2, — 1) (M2, — M2, M2_).
Combining (SP-2) and (SP-4) yields
(SP-2) + (SP-4) = —2M2,(M?, — 1)(1 — M2_) (M2, — 1).

We can then find

o

2 (M2, — 1)’ (M2y — M2 MP) — 22, (M2, — 1)(1 — M2_) (M2, — 1)
2 (M3, — 1) [(M3, = Mi M}) (M3, — 1) = M, (M, — (1= M} )]
2 (M, — 1) [My, — M3,M} M} — M3, + M; M

— M3,M7, + My,M; Mi_ + My, — Mj,M;_].
Obviously,
=2 (M3, — 1) [M3, + Mi M — M3,M, — M3,M]_]
=2 (Miz 1)
=2 (M3, — 1) [M}, (M3, — Miy) — Mi_ (M}, — Miy)]
2 (M}, — 1) (M3, — Miy) (M7, — Mi_).

[
(M}, — Mi,MT + M M — Ma,M:_]

Putting all results together we obtain

Mjl _MziZ = ,8

2 (M3, — 1) (M3, — M2,) (M3, — M3) ‘
(y—1) (M2, —1)" + M2, —1)(1 = M2) [2— )M2, — (1 —y)]

Problem 3.26 Solve the shock polar relation numerically and plot curves for 8,1 =
0.1and B,; = 4and with y = 5/3.
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6 6
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M%, M%,

Fig. 3.2 Shown is how the Alfvén Mach number shock polar (3.89) changes as the upstream
magnetic field angle 6, varies (8, = 0°, 1°,30°, and 60°) for B,; = 0.1

Solution We rewrite Eq. (3.87) as
M3 =D (M3, = 1) + [ MG, — (1= )] an® 61| (3.89)
= [M2,(1 +y) — yB, sec® 0] (M2, — 1) — M2, [M2yy — (1 + y)] tan® ;.

where we used

2
as1 14

S ==8,. 3.90
V2 2,3p (3.90)

Equation (3.89) is solved numerically and the results are plotted in Figs. 3.2 and 3.3.
Shown is the change of the upstream Alfvén Mach number M/sz depending on the
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Fig. 3.3 Shown is how the Alfvén Mach number shock polar (3.89) changes as the upstream
magnetic field angle 6, varies (9, = 0°, 1°,30°, and 60°) for B,; = 4

upstream Mach number M3,. Those sections of the shock curve that lie above the
line r = M3,/M3%, = 1 correspond to expansion shocks, which are physically
inadmissible since they violate the second law of thermodynamics. The only physi-
cally acceptable solutions are those below the line » = 1; curves that correspond to
compressive solutions. For further information about the interpretation of the curves
we refer to Zank [5].



Chapter 4
Charged Particle Transport in a Collisionless
Magnetized Plasma

4.1 The Focussed Transport Equation

Here we start with the non-relativistic Boltzmann equation (2.1),

of F (5
a0V Vi = (E)SJFS. @.1)

Note that, here, this equation has been implicitly separated into mean and
fluctuating parts, with the fluctuating components being treated as scattering
terms and have been relegated to the right-hand side. The particle source
term is denoted by S. The force term in the Boltzmann equation (2.1) can
be quite general. Here we restrict ourselves to F = g (E 4+ v X B/c;); the
electromagnetic force on a particle with mass m and charge g, where c; is the
speed of light.

Consider now a frame of reference that propagates in the inertial rest frame
at a velocity u (with the transformation (2.3),¢ = v—u), in which the motional
electric field is described by E = —u X B/ c,. By transforming into the moving
frame the motional electric field cancels exactly the electric field and leaves
F = gc x B/c;. Following the transformations from Problem 2.2 we find for
the Boltzmann equation in a mixed phase space

af af u; u; q af _ (of
o it ) oo (3t ++a) g, (CXB)") b \3r ).

mcg
“4.2)

(continued)
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where we neglected particle sources (see also Eq.(2.2)). Assuming that the
particle gyroradius is much smaller than any other spatial length scales in the
system and, similarly, that their gyroperiod is much smaller than any other
time scales in the system, then, the particle distribution may be regarded as
nearly gyrotropic, i.e.,f(x,v,t) = f(x,c, 1, ¢, ) is essentially independent of
gyrophase ¢, so that f(x, c, i, ¢, 1) ~ f(x,c, i, 1), where p = cosd =c-b/c
is the particle pitch angle and b = B/B is the unit vector along the large-scale
magnetic field. Since we are assuming gyrotropy we may average Eq. (4.2)
over gyrophase, see the following Problem 4.1.

Problem 4.1 By collecting all the terms associated with the gyro-phase averaging,
derive the general form of the gyro-phase averaged transport equation.

Solution We start with Eq. (4.2) and transform first into spherical coordinates.
The distribution function in Eq. (4.2) is a function of position r, random velocity
¢, and time ¢, so that f = f(r, ¢, t). By transforming into spherical coordinates we
have ¢ — (c, u, ¢), where c is the absolute value of ¢, &t = ¢ - b/c is the cosine
of the pitch angle, and ¢ is the gyrophase. Here, b = B/|B| is a unit vector along
the large scale magnetic field. With a spatially varying magnetic field B it follows
that « and ¢ depend on the location of the particle (since the magnetic field changes
with different particle positions). Thus, u = p(r) and ¢ = ¢ (r). With that we have
to substitute the gradient of f by

af af onof  0¢ df
=ttt . 4.3
dr,  or | or o | 9r 09 “3
For the substitution of the velocity gradient we transform the random velocity ¢ into
spherical coordinates. For that we may write

c = c1e] + ey + c3es.

Here ey, €5, and e3 are arbitrary but Cartesian unit vectors with |e;| = 1 and ¢y, ¢2,
and c3 are the coordinates. Note that e}, e,, and e3 are orthogonal but not necessarily
(1,0,0); (0,1,0); (0,0, 1). The coordinate system, in which the random velocity ¢
is defined, is continuously changing in such a way that e3 always coincides with the
direction of the magnetic field b, i.e., e3 = b. For the transformation into spherical
coordinates we use

¢1 = csinf cos¢ ¢y = csinfsing c3 =ccost = cp.
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The curvilinear basis vectors are calculated by e, = (dc/da)/|dc/de|, where o =
¢, 0,¢. We find

e, = sin 0 cos ¢e; + sin 6 sin e, + cos Oes
ey = cos B cosge; + cos 0 sin pe; — sin fe;

ey = —sin ge; + cos ge,.
The random velocity can therefore also be written as
¢ = ce. = c(sin B cos pe; + sin 9 sin pe, + cos 6b) . 4.4

Note that we substituted e3; = b in the last term. Substituting the spatial derivative
by Eq. (4.3) we can rewrite Eq. (4.2) as

of of aM o | 8¢ of
o Tt [ o on a¢>}
du; du; af §f
_ (E + (j+ ¢j) — 9 .Qeljkcjbk) % (E) 4.5)

where we used the gyrofrequency §2 = g|B|/mc, and the Levi-Civita tensor €.
For the transformation of the velocity gradient we consider

o _fdc  9fdpn  0f 94
dc;  dcdc; A dc; ¢ dci

* In the first term on the right-hand side we consider the derivative of ¢ with respect
to ¢; and find

de; e 2 < ac,

dc . aa/cjcl 1 aCj CIS

= ij = €ci,
where ¢;/c = e,;. In other words, the derivative of dc/dc; is the i-th component

of the unit vector of the random velocity.
* In the second term we have, with i = e, -b = e.b;,

o _ Oegb; d /¢ eci€cj bi  pec
= bj— = b; 8, — =|—- ,
36, ac; T dc; ( ) c c c c

where b is independent of c.
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At this point we do not consider the gyrophase term and obtain for the velocity
gradient of the distribution function

o _of _+[b,- uea}a_f+ o o9

- 9 dc;”

C C

Substituting the velocity gradient in Eq.(4.5) we find the general form of the
transport equation in spherical coordinates,

of O  oudf 99 9f ou;
a oo oot aas) (o

o b peald o8] (8
X[W”[?‘ } +a¢>ac,} (E)

Under the assumption of a nearly gyrotropic distribution function we may neglect
terms proportional to df /d¢ and obtain

af )f 0w of du; u;
E + (Ml 1) [a_ + — arl 3,u:| [E + ( U; + C;) ar ; Qéz]kcjbki| (4’7)

[rees [ a0)= ()
ac c c Jou] \68t),

Now, we introduce a gyrophase average

ou;
+(1+CJ)

o QG,,kC,bk)
J

where
2 2
(sing) :—/ dpsing =0, (cos¢) :—/ dpcos¢p =0,
(4.8)

and average Eq. (4.7) over gyrophase. For that we consider each term separately:

A. For the time derivative we obtain immediately

I\ _of
()=

since the distribution function is independent of gyrophase ¢.
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B. The second term is described by

Jf

Bri’

<(ui+Ci)g> = (ui + (ci)y)
tle

where we average over c;, since u and the spatial gradient of the distribution
function f are independent of ¢. Consider now expression (4.4), where the
average is written as (¢ ), = c (€. ), so that

c(ec), = c(sin6cosge; + sinfsinge, + cosbb ), = cub. (4.9)

According to the relations (4.8) the averages (sin¢ ), and (cos¢ ), vanish and
it remains only the e3 = b vector. It follows immediately for the i-th component
of that vector that (¢;) 6= cub; and, therefore,

a a
<(ui +¢) a—{ > = (u; + cub;) 8_{
tlg

i
C. For the third term we have to calculate

B (I ()
a}"i B,u ) Bri aﬂ é a}"i B,u )

Let us consider each term separately:

<(ui +ci)

a. The first term on the right-hand side of Eq. (4.10) is given by

GO\ oo
lar,-a,u é ! ar,- ¢a/J,

Remember that the pitch angle u = e. - b = e.b;, so that

B,u BECjbj abj abj
BN (29T — (e, L = b
< ori >¢ < ori [, ol 3, =0,

Keep in mind that the average over ¢ cannot be pulled into the derivative,
since ¢ is a function of r. In the third step we used the results from Eq. (4.9)
and find (ecj ) o= wb;. In order to calculate 0b;/dr; consider first

10(-b) _ 19k _ b _

= =bh— =0.
2 0 2 0r o
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The result must be zero, since b is a unit vector with b - b = 1 per definition.
Because of this result we have

au of
Ui—— =0
8r,~ 8,u é
b. The second term on the right-hand side of Eq. (4.10) can be written as
au 8f aecjbj af ( ) Bbj af
Cigma— ) =clei——) = =cleweq ), w7
a}"i aﬂ é a}"i é B,u e a}"i aﬂ

where we used i = e. -b = e;b; and ¢; = ce.;. In a vector description we
find for the averaging

(e. V(e -b))y=[{ec®e); V] b. 4.11)

where the symbol ® denotes a dyadic product. In the following we will omit
the symbol and refer to e. ® e, = e.e. as a dyadic product, see also Sect. 5.1.
For the average we find

2

(ecec)y = ece. do

27 Jy
2

— (sin B cos ¢pe; + sin O sin e, + cos Oes)

27 0

X (sin 6 cos ¢e; + sin O sin e, + cos fes) do

2

= 5= (sin® 6 cos® ¢ eje; + sin’ O sin® ¢ ese,
T Jo

+ cos? 6 eses + 2sin” O sin ¢ cos e er

+ 25sin 6 cos 6 cos e e3 + 2 sin 6 cos 0 sin peye3) do,

where we substituted Eq. (4.9) for e.. With the results given by Eq. (4.8) and
with

1/msinz(pd(p—l' 1/2ﬂcosz¢d¢—l
27 Jo X 27 Jo 2

we find for the average

1 1
(ece. )¢7 = a ee| + K’ ere) + ,u2e3e3. (4.12)
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As a side note: Since the base vectors are orthogonal, we have eje; + e;e; +
ezes; = 1, where 1 is the identity (unity) matrix. And with e3 = b we can
also write

2
K11 —bb) + 120b

1—
(ecec >¢ =

By substituting this result back into Eq. (4.11) we obtain

2

(e.-V(ec-b))y = [(1_“ []l—bb]+u2bb) v} b

0
=-b;.

1— 2
= [T“ (85 — bib)) + ;ﬁb,.b,} r

Consider the last two terms on the right-hand side of this expression, which
are essentially given by

db; _ b; dbb; _ b db-b

bba E&ri_EE)ri:’

so that

ob;  1—p2db; _ 1—

w?
— = —V-
or; 2 8r,~ 2 b,

)
(ec-V(ec b))y = [17“5,}

and therefore

8f> _ 1ok

v
< arm 2 onon

By combining both results we find for Eq. (4.10)

o af \ 11— wu? 0b; 8f
<(ul+c')8_r,@> =c 5 3}’13/1,

D. For the next term we use

8u, af bi Meci 8f 8ul Bf ,uz af
< ot |:acel+(? c )@i” "o I:ac'ubl—i_ c bl@ '

where the average operator acts only on {ec; ), = ub;.
E. The second last term is given by

) b; AN
h+fh= <(“/+CJ) or, I:aieci-i-(?—'uj )%:U .
¢
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([, (b e O
= ={ogy [reea (2 2) ),
([, (b pea) i
= ={ogy (e (2 12) ),

The first average, fi, can easily be solved with the results from the preceding
term, and we obtain

where

of - of
= bi bi—|.
fr= g or; |:8c'u * c ou

The second average, f>, can be simplified by using ¢; = ce,; to obtain

_ 8u, af bl‘ Heci af
L== < ar,[ac +(?‘ c)@M

8u, 8f af

With the previous result

_/“Lz

1
(eceq ), = (85— biby) + Whib; (4.13)

we find
< aul [ af (bl MECi) af } >
— ei +|——— | =
8r] dc c c Jou 4

BM, af 1 —pu? )
= ii — bibj)) ——— b;b;
ar] { dc |:(8/ /) 2 + M J

1 — pu? )
+ [Mbibi — K ((51:1' — biby) TM + Mzbz’bj)} %} : (4.14)

F. The last term can be written as

bi ci
2€jcibi a—feci + 2K TN —o
dc c c o]y

The last term vanishes for the following reasons:
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a. For the first term we obtain

f

2L —o,
dc

of
< Qeijkcjbk$eci >¢ = QEijkC ( €ci€cj >¢ by

where we used ¢; = ce;. This term vanishes for i = j, since the Levi-Civita
tensor is zero for two identical indices, €;; = 0. From the considerations
made under point (COb) we find, that (ece; ) » also vanishes for any i #

Jj # k. As an example, consider

€ (ecieci )y br = (ecrecr )y b3 — (ecrecs )y ba + (ecsect )y b
—(ececr )y b1 + (ecees )y b1 — (exect )y b3 =0,

where we used Einstein’s summation convention.
b. The second term is described by

b8f>

)
= .Qéijkﬂbjbkbi—f =0,
ey

ad
= .Qeijk(eq- >¢ bkbi—f apL

<~Q€chjbk 8,u

where we used ( e )¢ = ub;. Obviously this term is zero, since €, b;b;jby = 0
for any combination of 7, j, and k.
c. The last term can be written as

peci Of
c

d
> = Qe ecieq )¢ bkﬂ—f =0,
¢

< QG,,kC,bk apL

where we used ¢; = ce,;. This term is zero for the same reason as under
point a.

By combining all results we find

oF OF  L—p2ob of  ou [OF =2 of
- i bi) +— — bi+ ——bi—
g Tt en )8r,~ T o a Lact T T Y
du; [ of af du; | of 1 —u? )
O s 8 — biby) — 4 12bib,
M"Brj |:3CM T c 3,ui| Brj %ac [( ) 2 O

1 —p? 9 5
+(V~bjbi_ﬂ|:(8i/_bibj)Tﬂ uzbbD aﬁ} <3i; > :
sl¢

In the second line the second term in brackets can be simplified. By sorting all terms
with respect to i and ¢ derivatives we obtain

af af
- i b)) — 4.1
o + (u; + cp )ar,- (4.15)
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1-— “2 abl aui 3ui Zbl aui Bui af
it — _3ubb— — L = )| 2L
T3 [Car,- R T T (8t i arj” M
N 1— 3,u2b'b.8u,- 1 — u? Ou; _ Rbi (Oui | du of | of
2 o T T2 o e o TYan ) % T\ s/,

Problem 4.2 By assuming a constant radial flow velocity for the solar wind with
U = U,e, and a radial interplanetary magnetic field pointing away from the sun
with b = e,, derive the 1D focussed transport equation (4.17).

Solution The vector form of the gyrophase averaged transport equation (4.15) is

%+(U—|—cub)-Vf

Ll [cv'b—l—,uV'U—Sub'[(b'V)U]—§'[a—U—i—(U'V)Uﬂa—f
2 c ot au

—[7”-[8—’]+(U.v>v}+ l‘z“zv'v— 1_3”217)-[(I)-V)Ul}caf

ot 2 dc
_<5i

St s>¢

where we used U for the background flow instead of u. Note that the spherical
coordinates of the background flow and magnetic field are given by

U, b, 1
u=|o b=e=|0]|={0].
0 0 0

with U, = const. and Ug = Uy = 0, since the flow is purely radial and has no ¢-
or 6- component. Of course, b is a unit vector in radial direction with length one, so
that b, = 1. Recall that the nabla operator in spherical coordinates is given by

\Y 9 + Lo + L9 (4.16)
=e— teg—— t+tey——— —. .

ar a0 5 sinf a¢p
» The divergence of the vector U in spherical coordinates is then given by

19 19 1 U, U
Vou=—~2120]4 —— 2 fsin6 U] + — 2o _ 20
2o VUt e B0 Ul oo =

e It follows immediately that

V.b=

E N )
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* By considering the expression (b - V) U we need to transform the nabla operator
into spherical coordinates, bearing in mind that b = e,, so that

0
b-V=—,
ar

sincee,-e, = 1,ande, -eg = O and e, - e, = 0. Consider now

d de,
bV U=_U:Ur—:()’
( ) or or
since the unit vector e, = (sin 6 cos¢, sin 8 sin ¢, cos 6) is independent of r.
Obviously, the same holds for
d de,
U-YWU=U—U=U"-"=0,
or or

» Lastly, consider the term

a
(U + cub) - Vf = (U, + cp) ai;
With that we obtain
of of 1—u? of 1—p* O [6f
E""(UV"‘FCM)E“F p (c—i—,uU,)@ p Urcg— 55 .

4.17)

Problem 4.3 Assume that the one spatial dimensional gyrotropic distribution
function can be expressed as

f(rv c, Hst) :f—(rs c, t)H(_M) +f+(rv c, t)H(M)s

where H(x) denotes the Heaviside step function and fi refers to anti-sunward (f5.) /
sunward (f_) hemispherical distributions. By substituting f = f+ H(u) + f~H(—u)
in the 1D focused transport equation (4.17), where the scattering term on the right-

hand side is given by
of ad » Of
_ [ 1 _ 1,
<8u> au(”( “)au)

and by integrating over u separately from —1 to 0 and then from O to 1, show that

afs c\ ofr 2Ucdf+ ¢
W‘*‘(UiE)W—TSE‘F;Uﬁ—f—)ZZFF(f+—f—)s
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where I' = v(u = 0) gives the rate of scattering across ;t = 0. Note that the form
of the scattering term is of diffusion in pitch-angle. The term v is the scattering
frequency.

Solution Here we use the following definition of the Heaviside step function,

0 x<0

H(x):{1 x20'

We will also make use of the following definitions,
/H(x) dx =xH(x) + C;
v
/xH(x) dx = EH(X) + G
3
2 X
/x H(x) dx = gH(x) + Cs.
First, we substitute the definition of the distribution function f and obtain

frH(w) | If-H(—p) f+ (M) If-H(—p)
o t T TWUrteaw) —— + (Ut ep) — ——

(c+ uU) If+H (u) — (c+ uU) I-H(—p)
Iu au

1_2
L 1om

1—p? g W 1- p? o Of-H(—p)
— rC — UrC
r ac r dc

d of+H of—H(—
~a (0= B g (0 )

Since f+ = fu(r,c,t) is a function of r,c, and ¢ alone and the Heaviside step
function is a function of y alone, we find

afy af-

K TR R Y X

W+ e Hep D

2 w2
(¢ + nU) f+8(n) — (c+ pnU)f-8(n)

1— 2 1— 2 2
W vern 2L~ L g em o 2=
r dc r dc

1—
Llom

] ]
=frg, (v (1= 42)8(w) ~f5 (v (1= 42)8(w)
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0
=[f+ =/ W [v (1—-#%) sG],

where we used 0H(+u)/dp = £8(u), and where §(x) is the delta distribution.

A. Now we integrate this equation with respect to © from —1 to 0. Obviously,
terms that include H(u) vanish. By considering each term separately we find
the following results.

¢ For the second term on the left-hand side we find

du H(—p )—— du H(—p) = du H(p)
I L Wl

a _
- f[ @l =2

where we used the transformation —u — [.
* The fourth term on the left-hand side is given by

0 of_ of_ 1
[ aw w e iew = [ @ - 0 G
—1 r r Jo

af—
g

¢ The fifth and sixth term on the left-hand side can be written as

2

0 2 0
/ Py / du 2 e 4w ()
St

since the delta distribution contributes only for i = 0.
* The eighth term on the left-hand side is

0 ) 0
- [ an et ds = -0 [ (- ) e

dc r
_ W Ue (| 1\ _ 20 Uge
T 9 - 3/ 39c r

* The term on the right-hand side can be written as

0 d
e =1 [ [ (1= 1) 80] = s ~£-1 v = 0,
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By combining all results we find for the integration from u = —1 to 0
af-  of- c c 2 Bf U,.c
(v, -= . —f- =0).
% T o ( 2)+r(f+ =[fy —/~Iv(in=0)

Now we integrate this equation with respect to u from 0 to 1. Similarly, terms
that include H(—p) vanish and by considering each term separately we find the
following results.

e The first term is

3 1
/ du H(u )ﬁ:%/o dp H(u) = f+ [LH(w)]y = g;r

¢ The third term is

f _ o
O

-5 (0+5)

1
/ dp (U, +cu)H(u) / dp (Uy +cp) H(p)

e The fifth and sixth term are similar to the case above and can be written as

1 1 —u? 1—
/0 e AT I / a2 e U £o5(0)
=S -1,

;

since the delta distribution contributes only for . = 0.
e The eighth term is

1 1
—/0 dul w UrcH( )af—+= af+U’c/0 dp (1= p?) H(p)

dc r

8f+ UrC 1 28f+ U Cc
= —— 1 — = —

dc r 3 30c r

* The term on the right-hand side is given by

! ad
(e =) [ i g [ (1= 1) 800)] = =1 =1 v = 0,

where (mathematically somewhat simple) the delta function contributes only
for 4 = 0 and was set to 1.
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By combining all results we find

Iy | fy c c 2 0fy Uyc
Rl CA IR e SRty

= —[fs ~fIv(u=0).

By combining all results from the integrations with respect to p from —1 to 0
and from O tol, we obtain the two equations

2 Of s U,C_
3 9c 7 =F[f+ —fI7,

ot or

e | Ofx cy ¢
(U )+ () -

where I' = v(u = 0) gives the rate of scattering across . = 0.

4.2 Quasi-Linear Transport Theory of Charged Particles:
Derivation of the Scattering Tensor

The relativistic Vlasov equation is given by

pxB B_f_
m p

5
l+£-Vf+q(E+
a  m

0. (4.18)

Problem 4.4 Rewrite the relativistic Vlasov equation (4.18) using a mean field
expansion for the electromagnetic variables, assuming that the particle distribution
function is co-moving with the plasma (thus ensuring that Ey = 0), and neglecting
the fluctuating electric field term. Hence derive (4.20) and (4.22).

Solution The electric field is given by E = E( + SE and by setting Eg = 0 and
neglecting electric turbulence (§E & 0) we find for the Vlasov equation

o
ap

)
l+£‘Vf+2PXB'
o m m

=0.
By using

B =B+ 3B (B) =B, (8B) =0
f=h+éf (f)=sh (of) =0,
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we can write for the Vlasov equation

a a8 a
ot a  m m m ap
m ap m dp m ap

Now we average Eq. (4.19) over an ensemble of particles. Note that all terms with
fluctuations (3f and 6B) vanish except the last term on the left hand side. We are left
with

Yo o P ogpi 9y, o4, 0sp. 2\ . (4.20)
a  m m ap m ap
By subtracting Eq. (4.20) from Eq. (4.19) we find

a8 98

—f+£-V8f+2pXBo-—f

a m m ap
= g P4y 5p 0 A g T 4.21)

m p m ap m ap

We consider now the three terms on the right-hand side of Eq. (4.21). The expression
in front of the derivations dfy/dp and d8f/dp can be interpreted as a force F
(compare the units),

inpXSB.
m

Since the turbulent magnetic fields are small perturbations to the constant magnetic
background field By, we may consider the force term to be small as well. In fact,
this force term has to be significantly small so that we can introduce the time scales

T KLt KL g,

where 77, represents the time scale on which the force term affects the evolution
of the particle distribution fy and Eq. (4.21) cannot be applied. We can also find a
time scale 7., where the two-point two-time correlation function for the magnetic
fluctuations becomes negligibly small (see Chap. 5.4 in [5]).

Again, the force term has to be significantly small so that within the time scale t
(where fj is unaffected by the force term) the variation §f, which is generated by the
force term, remains much smaller than fy. (For a detailed description see [4]) In this
case the last two terms on the right-hand side of Eq. (4.21) can be neglected and we
find

WP ey Ly, Y 4,5 P (4.22)
aa  m m ap m ap
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Problem 4.5 Derive the relations (4.23a)—(4.23¢) and hence show that

q 2 . BT
- (p x 8B - Vfy) = -3 (8B, sing — 5B, cos ¢) T

Solution By transforming the momentum vector p from Cartesian coordinates
into spherical coordinates (py, py, p;) — (p, ¢, 8) we have for each component

px = psinf cos¢ py =psinfsing p; = pcosb.

For the transformation of the Cartesian partial derivatives into spherical coordinates
we use the Jacobian matrix with

ap 00 99 sin 6 cos ¢ p cos 6 cos ¢ —p sin 6 sin ¢
=& W) _ g i i
J = aa—p 5—937 = | sinfsin¢g pcosfsing psinbcos¢
P P P cos —p sin
ap 90 ¢ o psint 0

The inverse Jacobian matrix is then given by

sin 0 cos ¢ sin O sin¢ cos O

J_l _ cos 6 cos ¢ cosflsing  sinf
- P P 14 ’
__sing cos ¢ 0
psiné psiné
so that

R sin 0 cos ¢ 270¢ fcosg _ sing 3
s psinf B

d . . cosfsing  cos¢ 9
By | = | sin fsing ———% Ty ? ,

d i 2
. cos 6 - % 0 3

where we used the transposed Jacobian matrix (J~')7

Eq.(5.33) in [5])

. We find the relations (see

ad ) d cosfcos¢g 0 sing d
— =sinf —_t - — 4.23
Gpy  Smbcos et T N g 99 (4.232)
0 . . d cosfsing 9 cos¢ 0
9 infsine 2 = 4.23b
op, — SmOSING G T 56 T hsinG 09 (4.230)
0 _ cosgd _Sinf 9 (4.23¢)

ap. p p 00
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With the momentum-vector in spherical coordinates and B = (§By, §By, 6B;) we
find for the cross product

psin 0 sinpdB, — p cos 08B,
p X 6B = pcosB8B, — psinf cospdB, ,
sin 6 cos 8B, — p sin 0 sin ¢ B,

so that
o
(p X 6B) - Vyfo = (p sin 0 sin 3B, — p cos 6B )
'Px
4+ (pcos 86B, — psin 6 cos pSB;) gﬁ
Py

) o

+ (p sin 0 cos ¢8B, — p sin 0 sin ¢ B, .
P:

Now we substitute the Cartesian partial derivatives by (4.23a)—(4.23c). On assuming
that the averaged distribution function is gyrotropic, i.e., independent of the particle
phase angle ¢, we neglect any derivatives with respect to ¢ and find

(p x 8B) - Vyufy
= (psin0 sin¢SB. — p cos H5By) (sin 0 cosq&ai cosfcosg 9 )fo
P P
+ (pcos 03B, — psin 6 cos $4B;) | sin ¢ sin¢>i cosfsing 9
ap p 00

+ (psin 6 cos ¢8B, — p'sin 6 sin pSBy) (cos 9% - 5129 a%)fo.

Note that the terms proportional to dfy/dp vanish, so that

(p x6B) - Vyfy = (sin 0 sin 3B, — cos 6B ) cos 8 cos ¢ fO

+ (cos 08B, — sin O cos ¢pB;) cos O sin ¢ fo

af

— (sin 6 cos p3By — sin 0 sin ¢8B,) sin 6 - T

Furthermore, terms proportional to §B, vanish. By expanding and collecting all
remaining terms proportional to §B, and §B, we obtain

d
(p X 8B) - Vpfo = [sin ¢3B, — cos quBy] 30"
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With the gyrofrequency |§2| = gB/m we obtain finally

q 2] . o
- (p x 8B) - Vyufy = -5 [sin @SB, — cos pSB,| TR

4.3 Hydrodynamic Description of Energetic Particles
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Problem 4.6 Derive the dispersion relation (4.27) for linear wave modes in a
cosmic ray mediated plasma.

Solution First we linearize the above Eqs. (T-1)—(T-9) about a uniform equilib-
rium state, where

o= po+dp P, =P, + 6P, PgZPg0+8Pg
B, Suy
B = | By + 8B, u=|6u
By + 8B, Su,

Note that uy = 0 and B, = const. and that any derivative §u,d/dx will be of second
order in the small quantity and can therefore be neglected. Thus, the convective
derivative reduces to d/dt = 9/dt. The linearized 1D transport equations can then
be written as

98p N dbu, 0
ot o ox
2 S u, N 8P, N 5P, N @85& N %853Z _0

ot ox ox u ox uo ox
0éuy, B, 0B, —0

Po

ot woox
ddu, B, d5B,
ko a ; x 0
6B odu 00u,
e R
ot ox < ox

08P, 08,
P— =
or T VePemgm =0
08P, B %8P _
o Ve Ty w

We seek solutions of the form ¥ = Yexp [i(wt — kx)] (compare with Prob-
lem 2.10), so that the derivatives can be written as

. ” o o 0’ — 2w

o wx ox2 ’
where ¥ can be substituted by any of the variables §p, §B, du, and §P. By substitut-
ing these results back into the transport equations, multiplying each equation by the
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complex number —i, dividing by k, and using V, = w/k we obtain
Vpbp — poduy =0

B B
V,podity — 8Py — 8P — =8B, — —28B, = 0
n n

By
VppoSuy + ESB}, =0 (4.25a)
B,
Vppodu, + —68B, =0 (4.25b)
n
V,6By + B.Suy, — ByoSu, = 0 (4.25¢)
Vy6B; 4+ B du, — B,oSu, = 0 (4.25d)

Vp$Py — ygPgobu, = 0
V8P, — ycPeobuyx — ikk8P, = (V) — ikk) §P. — yePobu, = 0.

We combine now Egs.(4.25a) and (4.25c) to substitute Su, and Egs.(4.25b)
and (4.25d) to substitute du, and obtain

VpByoSu, — (V; — V) 8B, = 0
VpBoSu, — (V; — V2) 6B, = 0,
where we used V2 = B2/ upo. The set of equations reduces to
Vyép — pobuy =0
V,p08ity — 8Py — 8P, — %83}, - %531 =0

VyByoSux — (Vy — Vi) 8B, = 0
VyBoSu, — (V, — V2) 8B, = 0
Vp6Py — ygPgobuy = 0
V8P, — yePeoSuyx — ikk§Pe = (V) — ikk) 8P, — yePeoSux = 0.

It is convenient to rewrite this set of equations in matrix form
—po 0 0 0 0
Vppo  —By/m  —Bo/p 0 0
VoByo —(Vy —V7) 0 0 0
VpBo 0 —(Vg -V 0 0

—¥ePgo 0 0 Vp 0
—YgPeo 0 0 0 (V, — ikk)

<
Il
oo o oo
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so that

M- ¥ =0,
where the vector ¥ = (8p,8ux,8By,SBZ,8Pg,8PC)T. As in Problem 2.10, the
trivial solution is given by 6% = 0, and the non-trivial solutions are given by the
eigenvalues of the matrix M. Therefore, we calculate the characteristic polynomial
det(M) = 0. Developing for the first column we find

VpPO _ByO/H _BzO/M 0 0
VoByo — (V7 —V}) 0 0 0
det(M) = V, det| V,B 0 —(V;=V) 0 0
—YePeo 0 0 Vo 0
—YePeo 0 0 0 (V, — ikk)

The remaining determinant can readily be calculated and we obtain

B?
det(M) = V), [Vapo (V2 = V)’ (V, = ikk) — VoV = VI, — k)

B} . 2 .
_ 710\/[3(\/,3 — VOV, — ikk) — ygPeo (Vi — Vi)™ (V, — iKk)
P (V= VY] =0,

where the remaining determinant was developed for the first row. The factor
(Vg - Vf) can be pulled out of the square brackets. We also combine the second
and third term in square brackets, leading to

2 2 2 2 2 . B§0+Bzz,0 2 .
0=V, (Vo =V})[Vopo (V) — Vi) (V, — ikk) — Tvp(vp — ikk)

— ¥¢Py0 (vj — V) (V, — ikk) —ycPeo (vj -V)v,].

Recall that V2 = B2/upo, we can combine the V2 summand in the first term with
the second term by using B(z) =B+ Bfo + BEO. We also divide by py to obtain

BZ
0=V, (V,-V)) [v;,‘(vp — iKck) — —=V(V, — k)
Kpo

_ YePeo (V2= V2) (V, — ikk) VP (Vvo-Vv2) v,,} )
Po Po
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By using the definitions

B} P P,
I R M CB )

V2 =
4 Lo Lo

B HPo

we obtain

0=V, (V; = V) [Va(V, —ixk) = ViV2(V, — iKkk)
—azy (V3 = Vi) (V, —ick) —aZy (V2 = V) V,].

We reorder the expressions in square brackets from highest to lowest order in V,
and obtain the dispersion relation

0=V, (V;= V) [V, —ixkV} — (Vi +a2) V,
+ ik (V3 + ago) Vi + L V2V, —ikkay, V7] . (4.27)

Problem 4.7 By considering the long wavelength limit of the dispersion rela-
tion (4.27), show that the fast and slow magnetosonic modes are damped by cosmic
rays, since the waves propagate approximately according to

V, = Vy + ikkB + O ((kk)?) (4.28)

where

a2 (v2 —v2
B = o(17.- 1) . (4.29)
2[(Vi+a2) V2, —2a3V2)

Solution We begin by considering only the square bracket in the dispersion
relation (4.27), which is given by

5 _ oyt 2 2\ 3
V, —ikkV, — (Vi+a3) v,
+ ik (V3 + ay) Vo + ai ViV, — ikay,V; = 0. (4.30)
By setting k = 0, i.e., no particle diffusion, we obtain
Vo[Vi=(Vi+ay)V, +aiVi] =0, 4.31)

which has the solutions V), = 0 and (by solving the biquadratic formula)

2=V} = [Vj +ak £ \/ (V2 +a2)’ - 4aiV3i| , (4.32)

1
2
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the speed for the fast (+) and slow (—) magnetosonic modes. The difference
between these wave modes and those derived in the usual MHD theory (see Prob-
lem 3.19) is the presence of the mixed sound speed ax = /(yePq0 + YcPc0)/ po,
indicating that the cosmic rays couple to the background plasma and alter the phase
speed for these wave modes.

We assume now that the phase speed V,, (now with k # 0) can be approximated
by the fast/slow wave modes plus a small perturbation, V, = V, + &8, where
& = ikk is a small but non-zero quantity and 8 (independent of k) remains to be
determined. All appearing orders (up to the fifth) can be written as

Vp = Vis+ep V)=V +4eVi B +0()
V2=V +2:Vi B+ O() Vo =V} 45V B+ 0()
VI=V} 43V} B+ 0().

Substituting these approximations into Eq. (4.30) and using ¢ = ixk we obtain

Vi 456V} B —e (V) +4eB) — (Vi + @) (V] + 3eV2B)
e (Vi + ag) (V7 +26Vrf) + ap Ve (Vi + B) — eagy Ve = 0.

The two terms of order O(s?) may be neglected for further calculations. We rewrite
the equation in terms of orders of &, which leads to

Vi [Vis = (Vi +ad) Vi + V]
— eV} —ealy Vi + & (Vi + al) V7,
+ 56V B—3e (Vi +ai) Vi B+ aiViep =0.

Obviously, the first three terms is zero since Vy is a solution to Eq.(4.31). All
remaining terms include &, thus, we may divide the equation by ¢ # 0 and obtain

Vi —ag Vi+ (Vi+ay) Vi, +B[5V, =3 (Va+a) Vi +aVi]=0.

By pulling the first three terms to the right-hand side and dividing the equation by
the expression in square brackets we obtain

N VE— (VB @) VA a v

IBZ_

= . (4.33)
D SV_;{S —3(Vi+4dd) Vﬁs +aVv?

The numerator can be simplified by using the relation a§0 + “30 = a2, leading to

N =V} — (Vi+a) Vi, +ayV;
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4 2 2 2 2v,2 2 2 2
= [Vf,s - (VA + a*) Vf,s + a*vx] + ) (Vf,s - Vx)
2 2 2
= dy (Vf,s - Vx) ’ (434)

where the term in square brackets is zero, since Vy is a solution to Eq. (4.31) (see
above). The dominator can be simplified in a similar manner to obtain

D=5V} —3(Vi+al) Vi, +a.V;
=4V}, —2(Vi+ @) Vi, + [V, — (Vi+ @) Vi + V(]
=4V —2(Vi+ai) Vi, (4.35)

Using V]ﬁ‘“Y = (Vf + ai) V]%X — aiV)% (see Eq.(4.31) above) we can rewrite the
expression as

D

(Va+a3) Vi, —4aiVi =2 (Vi + a2) Vi,

4
2(Vi +az) Vi, —4a, Vs, (4.36)

Substituting both results for N and D back into Eq. (4.33) we obtain the expression
for B in Eq. (4.29).

Problem 4.8 Show that in the opposite limit, short wavelength modes decouple
from the cosmic rays in that they propagate at the thermal magnetosonic speed, but
are nonetheless damped by cosmic rays since

y
V, = Vi — 4.37
p 1, ‘szk ( )

where Vy is the fast/slow magnetosonic speed (see previous problem) for the
thermal plasma (i.e., the dispersion relation contains only the thermal pressure Pg
with no contribution from P.j), and

azy (V; = V)

2 [(Vi + aﬁo) Vi — 2a§0v3] ' (4.38)

M:

Solution First, since Vy is the fast/slow magnetosonic speed for the thermal
plasma, it follows that afo = 0 and, therefore, ai = a§0 + afo = aéo. Therefore,
Eq. (4.31) can be written as

Vi = (Vi +ag) Vi, +ag,Vi=0. (4.39)

As before we begin with Eq. (4.30) and assume that the phase speed V,, can be
approximated by the fast/slow modes plus a small perturbation, V, = Vs, + epu,
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where the perturbation is given by ¢ = 1/ikk and u has to be determined. By
substituting ¢ into Eq. (4.30) we find

1 4 2 2 3 1 2 2 2 2v72 1 2 y2
ViV (Vi+a)V, + " (Vi +ag) V, +aiViv, — SapVs =0.

L
(4.40)
All appearing orders of V), (up to the fifth) can be written as
V, =V +ep Vi =V +4eV u+0(e)
V2= Vi +2eVi g+ 0(s) Ve =V3 +5eVu+0(e)
V3=V 4+3eViu+0(e?). (4.41)

Substituting these approximations into Eq. (4.40) and multiplying the equation with
& we obtain

e[Vi, + sevi] - [V, +4eVi] — e (Vi + @) [ Vi, + 327
+ (Vi + ago) [V, + 26Vysu] + ey Vi [Vis + ent] — ag Vi = 0. (4.42)

The three terms of order O(g?) will be neglected for further calculations. In the
following we rewrite the equation in terms of orders of ¢, leading to

= Vi Vit ap) Vi —ag Vi + Vi —e (Vi+ @) Vi, + ealVVy,
+ 26 (Vi + agy) Vis — 4peVy, = 0. (4.43)

Obviously, the first three terms are zero because of relation (4.39). All remaining
terms include an ¢, so we may divide the equation by ¢ # 0. We may also divide by
Vs for simplification. In the last line we also pull p out,

Vii—(Vi+a) Vi +aiVi—2u[2VE, — (Vi + ay)] = 0. (4.44)

By pulling the term proportional to w to the right-hand side and dividing by the
expression in square brackets we obtain

Vi—(Vi+a) Vi +aV}

1
= - (4.45)
2 2 2 2
2V - (V2 +ad)

M:

Tl =

The numerator can be simplified by using the relation aéo + afo = a2, leading to

N=V} —(Vi+a)V}, +aV]
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= [V, (V2 + ) Vi V2] = (V= V2)
=y (V- V2). (446

where we used the relation (4.39) for the term in square brackets. We find

Lo (vi-v2)

n=—-= . (4.47)
2002, — (Vi + a2,
However, since ¢ = 1/ixk, we have to multiply by i/i, leading to
M
V, = Vg —i—. 4.48
p= Vs T (4.48)
Problem 4.9 Derive Burgers’ equation
) 1 9 1 82 1
P f gt P = 5 2 (4.49)

dt Yo T 02
from the O(e?) expansion of the magnetized fluid equations, where

e D@+ 0 D] (-2 +3 (V- a2V s
= 2[(a2 + V) V2 — 243 V2] 20

and

Kago (V[f - Vf)

A= :
2[(a + V3) V2 —2a2V2]

(4.51)

Solution We begin with the 1D MHD transport equations (T-1)—(T-9) and
normalize the set of equations to obtain a dimensionless description. Using the
method of multiple scales (see Problem 2.16) we introduce a time scale T such
that the relationship

M (4.52)

holds. We also introduce the following normalizations,

x=Lx t=T71 B = BB

Pg,c = gO,cOPg,c P = pPop u= Vpl2 (4.53)
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We obtain
R
— + —(puy) =0 4.54
57 T 35 (Pt (4.54a)
_dii, Gy dP, @ dP. Vi B+ B) (4.54b)
Pt =y, oax  pe o 2T '
_dity 27 a_y
— = ViB,— 4.54
Par = AP TR (4:54¢)
50 _ V2B 9B, (4.54d)
Prar T AR :
B, = const (4.54e)
0B, d - - -
8_; =% [uyBx — uxB}] (4.541)
0B d _ - -
8; =% [uz e — Uy Z] (4.54g)
dP, - O,
— P,— =0 4.54h
dP, di, %P,
=yl — v =0, 4.54i
dt ty ox ox2 (4.541)

where the long wavelength parameter is defined as v = «/(V,L), and where we

used the definitions (4.26). The convective derivative is given by

(4.55)

d 0 n
di 0t 0x
Similar to Problem 2.16 we introduce fast and slow variables § = x — 7 and t = ¢t,
with
d 0 0
—_ = — —=e— - —,
ax o€ ot at o0&
together with the expansions
p=14+ep' +... i, = il 4 ... i, = eit! + ...

5 Bl
Pp=1+¢P, + ...

where it is convenient to assume #, = 0 and B, = 0.
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Note that for all further calculations in this Problem we will omit the bars over the
various quantities with the exception of the sound speeds and the Alfvén speed,

} vy
2s00 Vi= 2 (4.56)
V[’ V[’

C_lgO,cO -

Now we derive a general form of the set of equations with expansions to the second
order:
Equation (T-1) is

,p! 8,0 8,0 oul 0w, oul ,  Op!

L X —x —= — =0. 4.57
sat 8‘5 8§+ §+8 5k +8'08§‘+8u"8§ ( )
Equation (T-2) is

at o0& o0& 85 * o0&
]/g ag yg 35 Ve 35 )/c ag
_, ,0B! 0B2 B!
—eVIB' = — VIR X —?ViB! Z 4.58
£ APz as z ag z ag ( )
Equation (T-4) is
8u au zaug ) laul ) laul
ar 85 & & * o0&
v 4o (4.59)
= eV,B, & n . .
A ag A as
Note that B, is normalized.
Equation (T-7) is
oB!  0B! 0B2
St St S S g4 4.60
PP PR T (4.60)
ou! ou? dul oB! Ou! 0u?
— B_ ZB__BO_X_ 2.1 z _ ZBI _ ZBO X‘
=¢ 8§+ o 818%‘ suxag 818& 818&
Equation (T-8) is
, 0P} aP1 , 0P ) | 0P dul
P R

or ‘e o TVt
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3 &2 , Ou!
_X =0. 4.61
Equation (T-9) is
20P  OPL 2apf L 0P! aul , 0u?
e —¢& + &%u £
at & & e o0& S &

el PP R
- — V¢ Vv
8 ag 352 aEZ

=0. (4.62)

* The lowest order system of equations is then given by

o' _ ol OBl ol o
0 0k 9  ToE Tk
dul  dy 0Py @ P 7 OaBl 8_&{, du!

9 vy 9y 0 PR

_%:‘_/2331 a_ﬂ:%a_@

9 9 9 0

and we find immediately

p1 = u)lc B; = —Bxu; + Bgu;
a @,

ul = S2pl 4 ~Opl 4 (2B0p! Py = y,u)
Vg V

u! = —V3B,B! P! =yl

. . 1 . . 1 .
Substituting u_ in the expression for B, gives

Bou! Bou!
Bl= =X — =X 4.63
1-viB2 1-V2 (*03)

X

where it can be shown from the normalizations that V2 = V2B2. Provided that
the relation
V2B’

4.64
T2 (4.64)

=2
1= agO +ac0 + =

holds, we have the following eigenvector solutions

‘_/ZBXBO BO 1
(,O ,ux,u B1 P1 Pl) = u; (1, 1,— 1A_ ‘_/ZZ T Vz’yg’)/c . (4.65)
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Note that the relation (4.64) is the normalized dispersion relation for the long
wavelength limit Eq. (4.31),

Vi—(Va+ai) V) +aiV; =0. (4.66)

* The second order set of transport equations is given by (where we used the results
from (4.65))

dp? | 0wl Oul | Oul

ToE e ot og
ol g 0P a2 OP?
0F Ty Oy 0f

0B2  dul o, BYul ju!
+VIB —F = 2 E X 4.67
b4 ag at A (1 _ ‘-/3)2 85 ( a)
oB>  u? \723 B? u!
V2B, —= =_AT = x 4.67b
P T AT (4.670)
8B§ 8uZ 0 ou? Bg du! B? du!
_ _B—= = et S Wt S Jutas & 4.67
0t 9 o 1-v2or 1-v2 o (4.67¢)
P> ou? ou!
asg yg ag yg a + )/g (yg + 1)
aP? auf du! e e+ Dl 1 0u 9%ul
—_c =Y, e (Ve u
g Ve Ve Tl TGy 852

To derive Burger’s equation we transform equation (4.67b) to obtain an equation for
u?, and substitute the result back into equation (4.67c), so that

dB? L2 ,0B2  VIB2BY ou! o’
oE ATN9E T 1-V2 o0t <k
_ B? duy BY | ou!

-2 ot 1-v2aE

After substituting the relation V2 = \_/jBf in the second term on the left-hand side,

we pull the third and fourth term to the right-hand side, and multiply with —1, so
that

2 0 72 p2 RO 0
( o OB B aui ViB:B: aui B; lau}c Oauf

0 1—v2ar 1—v2 o 1—v2ee T T
(4.68)
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The first and second term on the right-hand side can be simplified by

BY ou!  VIB2B? ou! 1 V22, 0u!
% e — 4+ =2 | B —=
1-V2adr 1-V? ot 1-vZ 1-Vv2) ®ot
_ 1+ Y/’%BO ou!
1-V2 <ot

Substituting this result into Eq. (4.68) and dividing by 1 — \_/f we find

0B? 1+ V2 ou! B! | ou! BY  0u?
G X — U — — .
0t (1—- ‘73)2 * ot (1- ‘73)2 T0E 1-Vv2 o0&

(4.69)

Using this result to substitute 8B§ /0€ in the momentum equation (4.67a) we find

oz, [aui

- 0| B

+ +a”’1€+( +1) 1y
- a -— u
o 0 or Ve U

3

g ou? n ou! et D) | Oul Uazu){
a —_ ¢ u —
|3 T o TV TR

ol 1+ \_/f o0ul b lau; Bg 31/&
+VABZ T a2 z_+ PN 72 a5
(1-v2)° "0t (1-vz) " 1-V2

ul Bl gul

. AT =2 e -
dt (1-V2)° %
We rearrange this equations to sort in terms of orders of «, and obtain

—* 4 a5 —= +[12 a_u)z‘ ‘_/iB(ZjZ au’z‘
9 00 V91— V2 0

au}c — ou! — ou! -5 02 1+\_/f au;
gt afo VB
RN

oz _, du?

ot g0 ot

1
du,

13_“;1c+3 ‘_//%B(z)z 1 Quy
0

YO T (1) g

+ag, (ve + 1) up—= + @ (ve + Du

Py
= da.yV .
c0 agz
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The first line is zero because of the relation (4.64). We find

P+a +am+Wm5iiK:}M

(-

+ |:‘_1§0 (e + 1) +ake+1)+3

‘—/ngz ul du, — 2 vazuylc
(1—v2)7] “og 0 oe

By using the relation (4.64) to substitute VjBSZ /(1 = V?) = 1 — @ in the square
brackets, we find

1 - dul
@) (-7 1 -2) (4 7)) 2
1 > 2 02 oy 10
+ 1—V2 {[ago ()/8 + 1) +ay (VC + 1)] (1 - VX) +3 (1 —a*)} MX¥
_, %!
Clzol)@.

In the first line, the expression in square brackets can be simplified to
(1+a2)(1-V)+ (1-a)(1+ V) =2(1-aV?),

and by multiplying the entire equation with 1 — \73 we obtain

2(1=272) 2 4 ([, (v + 1)+ 2 e+ D] (1= 7)

ou! —o _y ul
P30}l = 1)

Now, on dividing the equation by 2 (1 — a2 V?) we obtain Burger’s equation

1 1 2,1
u, 1 Oy 0°u,

gr e T M op

(4.70)
with

(@ (e + 1) + @ e+ D] (1= 7)) +3(1-@)
2(1-a V)

o=

azv (1 - Vf)

A= —nuw—
2(1-a@7?)
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Note that this is the normalized form of Burger’s equation. Finally, we rewrite the
solution in a non-normalized form, so that

e )+ @ e+ 0| (G V) +3(v; - a2
B 2(VE—a2V?)

By using the dispersion relation (4.66) we can transform the last term in the
numerator by 3 (V[‘,1 —a2 V[%) =3 (V/%VIE —a? Vf), so that

[ (v + 1) + @ G+ D] (V2 = V2) 43 (V2 = 2V2)
2(Vy —aivi)

o =

The denominator can be transformed in the same way as we transformed the solution
in Problem 4.7. For A we find

aqk (V; = V3) agok (V3 = V3)

T2(Vi—avy) vz 2vi— (V2 + )]

ago" (Vﬁ - Vf)
2[(Vi+ad) VE—2a2V2]

where we used the dispersion relation (4.66) in the denominator. Note that A
resembles the long wavelength limit result (4.29). Note also that we transformed
Vv — k, since we use the non-normalized form of the Burgers’ equation.

4.4 Application 1: Diffusive Shock Acceleration

Problem 4.10 Suppose that an upstream energetic particle distribution proportional
to p~“ is convected into a shock with compression ratio r from upstream. In
the absence of particle injection at the shock itself, calculate the reaccelerated
downstream energetic particle spectrum, and explain what happens if a < ¢ =
3r/(rl)ora > gq.

Solution The general solution for diffusive shock acceleration theory is given by

3 7 oW dp'
P ‘1/ (pg} . @.71)
uy — Up Pinj 47Tp

fO,p) =

Y _ ’
() [mf( 00,p) + ;

where ¢ = 3r/(r — 1) and r = u;/u, is the shock compression ratio, and p;; is
the injection momentum (compare also with Eq.(5.59) in [5]). Q(p) denotes the
injection of particles at the shock.
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If there is no particle injection at the shock, i.e. Q(p) = 0, and assuming that the
particle background distribution (upstream) is given by f(—oo, p) = Ap~*, we find

3 P ng—a— /
F0,p) = —ap9 / @)™ ap

Uy —uz Pinj

3 P an
= 2L ppa / @)~ ap 4.72)
Pinj

r—1

The integral is easily solved and we obtain

P’ =pinj

A —a
f(0.p) = qup_q ()T

=g [r=pip7] (4.73)

qg—a
where we used ¢ = 3r/(r—1).

e Case: a < g = 3r/(r — 1). In this case the upstream spectrum f(—oo, p) is
harder (flatter) than the one that can be accelerated at the shock (see Fig. 4.1
as an example), then the transmitted spectrum (downstream) will be the harder
upstream spectrum,

f(@0,p) xp™@. 4.74)

In f

Inp

Fig. 4.1 Qualitatively, shown are the two spectra for the case a < ¢. The transmitted downstream
spectrum is proportional to p—*¢
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In f

Inp

Fig. 4.2 Qualitatively, shown are the two spectra for the case a > ¢. The transmitted downstream

spectrum is proportional to pj~“p~4

* Case: a > q. In this case the upstream spectrum is softer (steeper) than the one
that can be accelerated at the shock (see Fig. 4.2 as an example), thus, the shock
accelerated spectrum will dominate,

f(0,p) o< pi;“pe. (4.75)

Problem 4.11 Suppose that a shock of compression ratio r accelerates n cm™>

particles injected as a monoenergetic source proportional to §(p — pg) at the shock,
so producing a downstream energetic particle spectrum o« p~<. Now suppose
the shock propagates out of the system and the compressed gas relaxes back
to the ambient state. Let another shock propagate into the system and suppose
that this shock reaccelerates the decompressed accelerated power law spectrum
that was accelerated earlier. Assume no additional injection of particles into the
diffusive shock acceleration process. Compute the energetic particle distribution
reaccelerated at the second shock. Again, suppose that the second shock disappears
out of the system and the energetic particle spectrum decompresses again. Derive the
energetic particle spectrum if a third shock reaccelerates the previously accelerated
spectrum of particles. What can you infer about the effect of multiple accelerations
and decompressions of a spectrum of energetic particles by multiple shock waves?

Solution Similar to the preceding problem we begin with the general solution
for diffusive shock acceleration theory, Eq.(4.71). Consider now a shock that
propagates through a region with particle distribution f(—oo, p); in this case the
distribution acts as an injection distribution f(—o0, p’) = A8(p’ — po), see, e.g., [3].
Substituting this distribution into Eq. (4.71) we find with £(0, p) = f(p)

3

dp’
Uy — Uy !

P
P_q/ @) wmAS(p" — po)—-
0 p

filp) =
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3M1

p
= Ap_q/ (p/)q_l 8" — po)dp'. (4.76)
0

Uy —uz

Note that p;,; is set to zero here. This is somewhat arbitrarily; we just need to ensure
that 0 < pp < p. The integral is easily solved by

—-q
fi(p) = gAp~ (po)"™" = 23 (po) , 4.77)

where we used ¢ = 3r/(r— 1) = 3uy /(u; — up).

Now the shock disappears from the system and the accelerated distribution f; (p)
decompresses, so that the momentum of every particle decreases. Let us denote the
new (decreased/decompressed) momentum with p and the decompressed distribu-
tion function with f‘l (p), where p is a function of the accelerated momentum p.
This distribution is taken as injection distribution into the second shock, so that the
accelerated distribution after the second shock is given by

— r N3 ’
ﬁ@%=wq/‘@) H@Hdp'. (4.78)
Po

The question now is, how to derive f‘l (p)) from Eq. (4.77), i.e., how to describe the
decompression. To evaluate the decompression consider the collisionless transport
equation (see [5], Sects. 5.2 and 5.7)

of Py O
- VfF—=V.-u— =0. 4.79
AR AR - (479)
Obviously the force is described by
p _p
— =-=V.u 4.80
dt 30" (4-80)
From Eq. (3.51), the continuity equation, we derive
1d
Vou=-—-22 4.81)
pdt’

where p is the background density. Substituting V - u we find

= (4.82)
dt 3pdt p 3 P

@_pldp dp ldp N /Pzdp l/ _p
P 3Jy P
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The integrals are easily solved and we obtain

p ("’
P2 _ (—) , (4.83)
P1 L1

where the indices 1 and 2 refer to two distinct scenarios. The idea is as follows:
Assume an unshocked region in space with background density p,. Suppose now
that a shock passes through that region, compressing the background material to
a higher density p; > p,. After the shock has passed through that region the
density decompresses back to p,. Basically, index 1 can be interpreted as the shock
(compression), where the particles have gained momentum p. Index 2 refers to the
post-shock (decompression), when the momentum has decreased to p. The shock
compression ratio is then r = p;/p,, so that

N 1\/3
b (-) =, (4.84)
P

r

For convenience we introduce » = R~3, so that p = Rp.

Now, according to Liouville’s theorem, the distribution f is a constant along the
trajectory of a particle in phase space, implying that the distribution function after
decompressionfl (p) is equal to fi (p) before decompression, therefore

fiRp) = fi(p) - he) =hHG'/R). (4.85)
where we used the coordinate transformation p’ = Rp. We deduce that the

momentum of every particle decreases according to the scaling p — Rp, which
means, that the shape of the distribution is retained but shifted down with a cutoff at
Rpo. In general, decompression means to change the momentum according to

p
P 4.86
P= % (4.86)

* Substituting result (4.85) back into Eq. (4.78) we find

p J—
Hp) =qgp™? / R(p’)q LA RYY, (4.87)
Po
where, according to Eq. (4.77),
A / —-q
AW R =22 ( P ) . (4.88)
Po \ poR

Note that the lower limit of the integral in Eq. (4.87) has been changed to poR to
accommodate the shifted cutoff of the distribution function. Substituting f; (p'/R)
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in Eq. (4.87) we find

Ag (p \ ' [Py
o =C () [ 5
Po \PoR poR P

A 2 -q
_ AT (L) In (L) (4.89)
po \PpoR PoR
Once the second shock has passed through, decompression leads to (p — p/R)
o i) ()
R)=—|— In| — ). (4.90)
L Po \PoR? PpoR?

* For the third shock the accelerated spectrum is given by

— P nag—1 ’ ’
fs(p)=qp‘1/ )" h /Ry

poR?

P A 2 / —-q /
_ —1 Aq 14 p
= qp "/ )" — ( 2) 1“( 2) dp’
PoR? Po \poR PoR
_AG(p T Py
=\ % In{ =5 | —
Po \poR Rz \PoR*/ p

A 3 —q 2
_ 2 (P ! m(-L_)\| . 4.91)
o \poR® 2 PoR?

Note that the already shifted cutoff as the lower integration limit has shifted again
by a factor of R to poR — poR?. After decompressing we find

_A¢( p \T1 p \T’
ﬁ@/m—p—o(m) z[l“(m)}' (492

¢ For the fourth shock we find

— p ng—1 / ’
A) = ap~ / )" 50/ R)dp

poR3

1 17 1 Ad? / —q / 2
=y [0 (i) [ ()] @
2 Jpor3 Po \ PR’ PR’
i) 3G %
—_ —_— —_— n JE—
Po \poR? 2 Jpors PoR? 24

A 4 —-q 3
_ A (_f’ ) m(—” ) . (4.93)
3-2po \ poR* PoR3
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Note that the already shifted cutoff as the lower integration limit has shifted again
by a factor of R to poR> — poR*>. After decompressing we find

o =20 (2 ) (2] (4.94)
=—\|— n|—; . .
) 3!po \ poR* poR*
In general we find for the i-th shock:
Aqi p -q p =1
iP/R) = —— | — In| — . 4.95
s = =i (o) (e 9%

It can be shown that for an infinite number of shocks the distribution function
approximates a power law,

foop) 0 p~°. (4.96)



Chapter 5
The Transport of Low Frequency Turbulence

5.1 Mean Field Description of MHD Fluctuations

In this section we derive the transport equation for the small scale Elsdsser
variables starting from the evolution equations for the kinetic and magnetic
energy. Note that the matrix Va(= V ® a) denotes a dyadic product and not
a vector gradient. The reader is urged to caution, since this notation is not
consistently used throughout the literature. Also, the symbol “” denotes a dot
product with the implication that V - a is the divergence of a vector a. The
multiplication of a vector b with a matrix is also indicated by the symbol “-”,
i.e., we write b - Va = b - (Va), meaning that the vector b is multiplied with
the matrix Va. We will also make use of the identity

V (fC) = fVC + CVY,

where the matrix CVf denotes again the dyadic product.

Problem 5.1 Complete the derivation of the transport equation for the Elsdsser
variables z*, starting from

0 By - (Vb) +b- (VB 1
—u+U-(Vu)+u-(VU)—[0 (Vh) ( 0)]=——V5pT+N”
ot 47po Po
G.D
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and

%—l;+U'(Vb)+ll'(VBO)—BO'(V“)—b'(VU)

=—(V-Ub—(V-u)B; + N, (5.2)

using the definitions for the Elsisser variables z* and for the Alfvén speed V4,

A mut D v, = B (5.3)
4mpo A Vanpo '

and the following definitions

U

—Vpp=-V-U (5.4a)
Lo
1 1 U
U.-v = V.— (5.4b)
J4mpo 4mpo 2
1
By-V =V .V, (5.4¢)

/470

Solution First we simplify the evolution equations for the turbulent kinetic (A)
and magnetic (B) energy. Then we combine both equations to obtain transport
equations for the forward and backward propagating Elsdsser variables.

A. We begin with Eq. (5.1) and consider the last term on the left-hand side. A closer
inspection reveals that

N N U ERRIEEN
JArpg  NfAmpe  Ampo 41 po 47 po

() [ )

b b
=V,-V — V-V4), 5.5
()~ o

where we used the chain rule in the first line. In the second line we expanded
the square brackets and used the identity for dyadic products, Bo [(Vf)b] =
[Bo - (Vf)] b, in the second term. In the third line we used the relation (5.3)
to substitute Bo/+/47py in the first term and the relation (5.4c) to rewrite
the second term. With this simplification the evolution equation for u can be
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rewritten as

a—u+U-(Vu)-|-u-(VU)—VA-V( b )

ot J4mpo
b b VB, 1
+—— (V- V) — —- = ——VépT + N (5.6)
J4mpo 4 JAmpo /AP 00

B. Starting with the transport equation for the turbulent magnetic fields (5.2) we
may rewrite the equation as

3/ b Vb VB B
—( )+U-—+u. 0 _ 22 (Vu)

ot NZE AN NZE AN 41 po NZE AN
b b By NP
— VU + (V- U) ——+ (V = ,
V4mpo (VO + J4mpo N/47r,00 J4mpo

where we pulled the terms — (V - U)b — (V - u) By from the right to the left-
hand side and multiplied the entire equation by 1/./4mpo, using the fact that
po is time-independent. A closer inspection of the second term on the left-hand
side shows that

o e () [ ()

b b U
—U-V _ v.—,
(«/471/)0) Vanpy 2

where we essentially used the results from Eq. (5.5), i.e., we used the chain rule
and the identity for dyadic products. In the second line we used relation (5.4b)
in the second term. Substituting this result back into the evolution equation for
b and using the definition for the Alfvén speed (5.3) we find

E(L)_’_U V( b )_ b (V H)+u&
ot NZE AN NZE AN 41 po 2 NZE AN

b b Nb
— V4 -Vu-— VUH (V- U)—— 4+ (V) Vy = ——.
N Wz NzTT

The third and seventh term can be combined, so that

2( b )+U V(L)+L(V E)+u VB
ot 41 po NZE AN NZE AN 2 41 po

b Nb
—V4-Vu— -VU+(V-u)V, = . 5.7
VN OO T 7
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Elsiisser Variables Now we combine the transport equations for u and b in such a
way that z* = (5.6) + (5.7) and z~ = (5.6) — (5.7). We obtain

9z* VB,

4 U-(VZ2R)FV,- (V2 2T —— + 27 .VU

a (Vz™) F V- (V2*) £z —47r,00+z
b U 1

+ V-V4+V-—])+(V-u)V, =NLy — —V§p’,
m( A 2) (V-m)Va 0 P

with the nonlinear terms NLy = N" £ NP/./4mp, on the right-hand side. A
common assumption adopted in turbulence modeling is to assume that small scale
fluctuations are incompressible, so that the mean density py varies slowly and
dp = 0 (see [5]). From the continuity equation we find that the fluctuating velocity
field becomes solenoidal,

0
3—'(;+V-pu:0 - V-.-u=0.

Thus, by neglecting the term proportional to (V - u) V4 and by using

b 7t — 2T

Nze 2

we can simplify the equation to

9z* 7t — 2T U VB,
—— 4+ (UFV,y)- vzt V|- <V T.VU+
E” + (U F Va)-Vz© + 5 [2 A}+z [ _47”00}
= NLy + 5%,
where we used ST = —V8p”/py. Thus, the transport equation for the small scale

Elsésser variables can be written as

ozt 1 U
4 (UFVy) Vet + -V | = £V, |zt
o +(UFVy)-Vz t3 [2 A:|Z
VB 1 U
427 | VU+ —2 _ 1V | = £V, || = NLy + 5%, (5.8)
dmpy 2 2

where 1 is the unity matrix.
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5.2 The Transport Equation for the Magnetic Energy Density

One can introduce the following moments of the Elsdsser variables

(zt-zt)+ (27 -27)

Er = 5 = (u?) + (b*/47po) (5.9a)
EC=(Z+'Z+);<Z_.Z_>=(u'b/m> (5.9b)
Ep=(z"-27)=(u)—(b*/4npy), (5.9¢)

where Er is twice the total energy in the fluctuations (the sum of kinetic and
magnetic energy), Ec is the cross helicity, the difference in energy between
forward and backward propagating modes, and Ej, is the energy difference,
i.e., the difference between twice the fluctuation kinetic energy and magnetic
energy density (measured in Alfvén units), sometimes called the residual
energy. By using the kinetic and magnetic energy

(u*) and Ey = = (b*/4mpo ) (5.10)

| —

and by combining Egs. (5.9a)—(5.9c) we also find the following useful
relations,

E, Er+Ep 1+Hp
Fp = — = =
AT E,  Er—E, 1-Hp

ED VA—l
Hy,= =2 _ , 5.11
PTE T Al SR

where r4 is the Alfvén ratio and Hp is the normalized energy difference or
residual energy. The total and residual energy can then be written in the form
Er =2E, +2E, = 2Ey(ra + 1) (5.12a)
Ep = HpEr. (5.12b)
A very general set of transport equations can be derived from Eq.(5.8) in
terms of the above moments together with correlation length equations. The

physical content is sometimes difficult to extract, so we make the following
assumptions that are quite reasonable beyond some 1-2 AU.

(continued)
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A. The Alfvén ratio is assumed to be constant.

B. The cross helicity E¢ is assumed to be zero, i.e., the energy in inward and
outward propagating modes is equal.

C. Structural similarity hypothesis.

Problem 5.2 Complete the derivation of the transport equation for E7, Eq. (5.14),
and hence derive the final form of the transport equation.

Solution Starting with Eq. (5.8) we can rewrite the second term in the last line

as
Z:F . VBO F 1
=27 -VVa+ —V,[zT - Vp],
NI A 29 al d
so that the evolution equation for the small scale Elsisser variables becomes
dz* + 1o [U . F T
T"'(U:FVA)VZ +§V EiVA z-+z"-VU=xz VVA
1 T 1 - U +
:t—VA[z -Vp]——z -1V = £V, =NLt + 5. (5.13)
2p0 2 2

To derive the evolution equation for the total energy Er we multiply the evolution
equation for z* with z* and the evolution equation forz~ withz ™, i.e., z" -0z /9t +

.andz~ - 9z~ /0t + . ... Then both equations are added up. By considering each
term separately we find by using the moments of the Elsésser variables, Egs. (5.9a)—
(5.9¢):

* First term: With definition (5.9a) the first term can easily be calculated as

dz* 0z~ 10 oE
<z+-z—+ -z >— (+-z++z_-z_)—a—:.

o L o
¢ Second term: Here we find
((U-Vz").z* +(U-Vz7)-27)=U- VEr,

where we used
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together with Einstein’s summation convention and the dyadic product. Note that
2. .
Vz*” is the gradient, so that

U U 2y g2
E.VZ+2+E.VZ—Zzu.v(u) =U-VE,

where we used definition (5.9a).
¢ Third term: Here we find

(=(Va-Vz')-z" +(V4-Vz7) .27 ) = -V, - VE,

where we basically used the results from the second term.
* Fourth term: Here, (V - U)/2 can be pulled out and we find

1 1 1
<Z(V-U)z+-z++Z(V-U)z_-z_>=EV-UET,

where we used definition (5.9a).
« Fifth term: Here, we pull out (V - V,) and find

1 1
<§(V'VA)Z+'Z+—E(V'VA)Z_'Z_>:V'VAEc,

where we used definition (5.9b).

For the remaining terms we will adopt the structural similarity hypothesis, where
we approximate z+zi_ = az™ -z~ for some constant g, i.e., the off diagonal elements

i

are approximated by the trace of the matrix.

» Sixth term: We find
( -VU)-z* + (2" - VU) 2" ) & 2aV - UEp + 2aEpS",

where we used

U, aU;
£, TV =(FF)V L a2t TV
(e v0) 27) = (57 ) 5 malataT) 50
= aED% = aEDV . U + aEDSzv

8x,~

and where Sy = >, ..., 9U;/dx; is the sum of the shear velocity gradient terms.
* Seventh term: By using the results from the previous term, we find immediately

((z_-VVA)-z+—(z+-VVA)-Z_)=O.
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* FEighth term: This term vanishes identically,
LVA (z”-Vp)-zt — iVA (z"-Vp)-z-)=0
2p 2p '
since

ap ap
Va(zt-V V,”Fi ~ VaiaEp—.
A( P) A% o, Aid Dax,»

* Ninth term: By using definition (5.9c) we find
. _ + 1o _ 1
_Z[Z -1(V-U)]-z _Z[Z -]l(V-U)]-z =—§V-UED,

since

z¥-1(V-U)-z7 —ziqu%—U =@zt -27)(V-U) = Ep(V-U).
Xi

¢ Tenth term: By using the results from the previous term, we find immediately

<_%[z_'l(V'VA)]'Z++%[Z+~]1(V'VA)]'Z_>=O.

Combining all results we find the transport equation for E7,

E
— U VEr —Va-VEc + v UEr + V- VAEC+(2a—§)V UE)
+2aEpS% = ([NLy 4+ S*] 2" )+ ([NL_ +57]-27). (5.14)

Under the assumption that the cross helicity is zero and by using the relations (5.11a)
and (5.12a) we find with Ep = HpEr = Hp2E(r4 + 1), the following expression

JE, 1
2(r4 + 1)8—;’ +2(ra + DU VE, +2(ra + 1)5V - UE,

+2(ra+ 1) (2a — —) V -UHpE) + 2(ra + 1)2aHpE;, S},

=([NLy +8%] 2% )+ ([NL_ +57]-27). (5.15)
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On dividing the entire equation by 2(r4 + 1) we obtain

oF 1
a—h +U-VE, + = V UE, + (261 — 5) V .UHpE, + ZaHDE;,S)’j

_ ([NL++S+]-z+) (INL_ 4+ 57]-27)

2(ra + 1) 2(ra + 1) (5.16)

By neglecting the right-hand side and the mixing terms proportional to Hp we obtain
the WKB equation (5.17).

Problem 5.3 Solve the steady-state WKB equation for the energy density of
magnetic field fluctuations

JE,
a—”+U VE, + V UE, = 0, (5.17)

in a spherically symmetric steady flow for which U = Uyr, Uy = const., py =

p00(Ro/7)?, and where pg is the density at a heliocentric distance Ry. Hence, show
that b?/b3 = (Ro/r)>.

Solution For a steady flow the energy density of magnetic field fluctuations is
constant in time, thus dE,/dr = 0. Considering a spherically symmetric flow, we
transform the gradient and divergence into spherical coordinates,

3E;, 1 BE,, 1 aEh
V = — _ -
= 5 T 90 T rsng a¢

N7
eae U+ ind 9 -

19
VU= 5o (r U)+

In a spherically symmetric flow all quantities are independent of 6 and ¢. Also,
since U = Uy, we find U, = Uy, so that U = (U, 0, 0) in spherical coordinates,
and Eq. (5.17) becomes

0E, 11 0
O, 110 yVE =0,
UOB 2r28r( UO) »=0

After dividing by Uy # 0 and taking the derivative of the second term, we obtain

IE, LBy . dE, dr
ar ro E, r’
which can readily be solved by InE, = —Inr 4+ Cy, where Cy is an integration

constant. We obtain the general solution of the WKB equation (5.17)

E, = —,
r
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where C = exp () is another integration constant that has to be determined by the
initial conditions. In order to calculate the constant C we recall from Eq. (5.10) that

el o) E
- dmpo |\ dmpoo (Ro/r)> | 1 .

where we used the density py = poo(Ro/r)* (see above). With the initial conditions
b = by at the radial distance r = Ry, we find for the constant

bg
C =Ry .
47000

Substituting this result back into Eq.(5.18) we obtain the solution of the WKB
equation (5.17)

b? Ry b} b? (R0)3

= — —_— =
r

B o G~ 7 4 G
oo (Ro/7) r 41 Poo 0

5.3 Modelling the Dissipation Terms

Problem 5.4 Complete the derivation of the correlation length equation (5.22).

Solution We start with the covariance equation for LT,

aL” 1 1
7;~+U-VLT+EV-ULT+2(a—Z)V-ULD+2MP$:=0 (5.19)

Zank et al. [6] argued that the velocity and magnetic field fluctuations posses equal
areas under their respective correlation functions, from which one can infer that
AP = 0. This is a somewhat severe restriction but maintains some tractability in the
turbulence model. Since L? = APE}, it follows that L” = 0 so that the transport
equation (5.19) can be simplified to

aL” 1
7;—+[LVLT+§V'ULT:O.

With LT = 2E;AT and recalling from Eq. (5.12a) that ET = 2Ey(ry + 1), where ry
is the constant Alfvén ratio, we find LT = 4Ep(ra + AT and, therefore,
OE,AT

4(rA + 1) at

1
+ 40 + DU-VEAT) +40a + DV - UEL" =0.
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On dividing the equation by 2(r4 + 1) # 0 we find

JE, AT 1
)LTa—b + Ey= =+ AU VE, + EU- VAT + -V -UEA" =0. (5.20)
Now we multiply the evolution equation for the magnetic field fluctuations,
Eq.(5.16), by AT and obtain

0E,

A= 5 +ATU-VE, + ATV UE, + AT (Za - E) V - UHpE,

+ A"2aStHpE, = A" ((NLy -z ) + (NL_-z7)) + 1",
where we used S = (S+ czt ) + (8™ -z ). For the nonlinear dissipation term we
use
B2
(NLy -zt )4+ (NL_-27) = _bT’

see [5], Chap. 6.4 for a detailed description. Hence, we find

E E3/2
AT Batb =-AT=L —+ ATS —ATU - VE, — —ATV UE,
AT (Za - 5) V - UHpE, — A"2aS"HpE},. (5.21)

Substituting this equation back into Eq. (5.20) we find

3/2

E 1 1
- )LT”T +ATs—ATU-VE, — E/\TV “UE, — AT (2a — E) V - UHpE,

AT 1
— A"2aS"HpE, + Ey—-+ AU-VE, + E,U- VAT + 5V -UEAT =0

The third and the eighth term cancel as well as the fourth and the tenth term. Then
we move the first two terms to the right-hand side and divide the entire equation
by Ep,

AT EV? _MTs
—— 4+ U-VAT = AT (2a— = )| V-UHp — AT2aS"Hp = AT =2
o T (a 2) b a rE



246 5 The Transport of Low Frequency Turbulence

Identifying now A7 with 21 we find the transport equation for the correlation length

oA 1/2 AS
b Eb ( )

1
E+U-VA—A(2a—E)V-UHD—AZaS;‘HD=E

Problem 5.5 Integrate the steady-state spherically symmetric form of the transport
equations,

dE, U U E?
Ua_rb + 7Eh — F7Eb = _—’/’\ (5.23a)
A u. E/?
UE + F7A = bT (5.23b)

analytically, if E,(r = Ry) = Ep and A(r = Ry) = A¢. Hence, show that
asymptotically, in the limit of no mixing I" = 0 (which is appropriate for either
2D or slab turbulence), one obtains the estimates

P2Jb% ~ (Ro/1)>* A/Ao ~ (r/Ro)"/*.

This model corresponds to Kolmogorov/von Karman turbulence in an expanding
medium. Show that in the opposite limit of strong turbulence (I" = 1), the solutions
reduce asymptotically to

bz/b(z) ~ (Ro/ 1), A/Ay ~ constant.

This solution describes Taylor turbulence in a non-expansive medium.

Solution We begin by dividing Eq. (5.23a) by E;, and multiplying Eq. (5.23b) by
a factor of 2. This yields

UoE, U _pU £ (5.24a)
-+t ——T'—=—— 24a
E, or r r A
A U
E)/* = 2+ 2I 0. (5.24b)
r r

Substituting now the term proportional to E ;/ % in the first equation by the second,
we obtain after some simplification the single differential equation

1 0E, 1 2 04

7= 1+ -=-=2, 5.25
r+(+ )r A or ( )
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where we divided by U. Multiplying now by dr and integrating yields

B 9E, " dr tdy
/ bra+n | S
Epo b Ry T Ao A

where we used the initial conditions Ejg, Ry, and Ag. This equation can readily be
solved and we obtain

In (ﬁ) +(1+4+7)hn (L) =—-2In (i)
Eb() RO B /\0 ’

leading to the solution
E R (1+1I) A 2
= (2 200 (5.26)
E;,() r A

This equation can be solved for

1+r

R\ * A
dﬂ:(i) TEw- (5.27)

r

This result is substituted back into Eq. (5.24b),

Ro 7/\() 12 _ oA U
(r) AEbO —2U§+2F7/\.

Now, we multiply this equation by A and divide by U, leading to

R lzr A oA
0 0 1/2 2
( r ) l’ hO or

Note that 2194 /dr = dA%/dr, and by using the substitution x = A2 we can rewrite
the equation as

Ro\ T A o T
o Aopi2 _ OX -
(r) UEbO 3r+2rx'

Multiplying both sides with #*" (integrating factor) yields

Ro 2 A Ox
2T (_0) 20p/2 _ 0% or 12y = (xr”).
r ar
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Integrating both sides with respect to r and using the above initial conditions yields

IJ’,J/X r 3r— r a
R UOE;éz/ SR :/ F(xr/zr)
R Ry OF

0

B Ao 12 2 a3 20 q2p2l
ROZU”OSF—}—I r2 —R,> [=A"r" — ARy

where we substituted x = A2 in the second line and used A, for the lower limit on
the right-hand side, since A(r = Ry) = A¢. Rewriting this equation leads to

LE2Mp It 5 2 3r41 3r+i
AP = 2R+ R, ZOE)) T —R,” | 5.28
r 00+0Ub031~+1" 0 (5:28)
By using the definition
U X
E;/z Ry’

Eq. (5.28) can be solved after some straightforward algebra to

A (R 12 =

0 r
== 1+ —-——| (= -1 5.29
AO (r) +C3F+1|:(R0) :| ( )
E, (Ro 1= 14 1 2 r i 1 - (5.30)
Eb() B r ci3r +1 R() ’ '

where we used the first expression (5.29) to substitute A /A in Eq. (5.26) to derive
the expression for E,/Ey. These two equations are the general solutions to the set
of differential equations, (5.23a) and (5.23b), see also Zank et al. [6], JGR 101, AS8.

Limits In the asymptotic limit (» > Rj) we obtain

A P\
A for I' =0, (5.31)
Ao (RO)
and
A

— ~ constant for I' =1. (5.32)
Ao
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Recall from Problem 5.3 that

B> Eypy _ Ep (R0)2 _ (10)2 (Ro)m_r)

b3 Eppoo  Epo \ r A r ’

where we substituted Ej,/Epy by Eq. (5.26) in the last step and where we used the
relation py = poo(Ro/r)?. Substituting A /Ao by relation (5.31) and (5.32) we find

b2 R 3.5
7= (_0) for I'=0,
0 r
and
b2 Ro\*
ﬁ = (_0) for I'=1.
0 r

Problem 5.6 Determine the general solution to the stream-driven steady-state
spherically symmetric form of the transport equations,

E, U U 153/2 U
Ua—rb +—Ey—I'—Ey =~~~ + Ca—E; (5.33)
aA u. E” U
vz = /\_—— Sy 5.34
ar + 2 h2r ( )

analytically, if E,(r = Ry) = Ep and A(r = Ry) = A¢. Hence, find asymptotic
solutions for weak and strong mixing.

Solution Similar to the preceding problem we begin with dividing Eq. (5.33) by
E}, and multiplying Eq. (5.34) by 2. This yields

1/2

UJE, U U E U

it o N o Pl 5.35
E, or + r r A + hr ( 2)
A
E/? _zuz +2r Ux+cy,,—x (5.35b)
r

Substituting the term proportional to E;/ ® in the first equation by the second, we
obtain after some simplification

1 0E, 1 2 0
—_— 1+7N)—=———.
E, or ++ )r A or
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Note that this result is identical to Eq. (5.25). The solution is given by Eq. (5.27),

g
El/Z Ro Ao E1/z'
r A

This result is substituted back into Eq. (5.35b),

r
R\ = A )
(—0) AO E/? = =205+ I +Ca) — Y. (5.36)
"

Now, we multiply this equation by A and divide by U, leading to

(5.37)

1+
Ro) %z A 2I' 4+ C;
Ko OE;(/)z _ 2/\ ( + h)
r U 3 r

Note that 2191 /dr = 9A?/dr, and by using the transformation x = A? we can
rewrite this equation as

R() A() 1/2 8x (ZF + C‘yh)
—FE/ = — 4+ ——x.
( r ) U or + r *

Multiplying both sides with 727 +Cs (integrating factor) yields

R() /\0 0x _
r21’+CS;, (7) UE%Z — _r21’+Cx,, + (21-v + Csh) r21’+Cx,, lx

or
33 (xrzr +csh) _

Integrating both sides with respect to r and using the above initial conditions yields

wr Ao " ar— "0
R() El/2/ 15 +CShdr/ — / e (xr/2F+CSh) ,
U Ro Ro ar’

which can be solved by

RIE A 2 Lt ey, _ gt G
O U 3+ 142Cy, 0

2.2 +Cy __ 12p20+Cyy
= Ar " — AR ,
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where we substituted x = A2 and used A for the lower limit on the right-hand side

Rewriting this equation gives

AZrZI"-I—CSh
= \2R2 G 4 R Aopp 2 [, e
o O T 3rF1+2Cy 0 :

This equation can be solved after some lengthy but straightforward algebra to

3Ir+i +Cyp
—1

Cy
(R o] 2 Py e
r C3F+1+2C5h R()

E, (R (1—I'—Cyp) 1+1 5 , Lty |
Eb() B r ci3r + 14+ 2Csh R() ’

where we used the constant C from the preceding problem. In the asymptotic limit
(r < Ry) we obtain the same results as for the preceding problem. Compare also

with Zank et al. [6], JGR 101, AS.
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Characteristic curve. See also Method of
characteristics
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Conditional distribution, 38
Conditional mean, 62
Conditional probability, 38

Conductive heat flux, 173
Conservation
angular momentum, 85
energy, 92
mass, 92
momentum, 92
total energy, 86
Contact discontinuity, 115
Continuity equation, 140
Convective derivative, 100, 161, 164, 185, 213,
222
Correlation coefficient, 48, 61
Cospectrum, 71
Coulomb field, 87
Coulomb logarithm, 154
Coulomb scattering. See Rutherford scattering
Cross section, 91
Cross-spectral density, 71

Debye length, 137
Diffusive shock acceleration, 228, 230
Dispersion relation
Alfvén waves, 182
linear wave modes in a cosmic ray mediated
plasma, 214
long wavelength limit, 217, 225
magnetosonic waves, 184
short wavelength limit, 219
Distribution function, 14
binomial distribution, 54
Gaussian or normal, 62
gyrotropic, 196, 198
Maxwell-Boltzmann, 92, 94, 102, 157,
161
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Poisson distribution, 57
spherical coordinates, 196

Eccentricity, 88
Eigenvalue, 99
Electromagnetic force, 195
Electron scattering, 87
Elsisser variables
cross helicity, 239
moments, 239
small scale, 235
transport equation, 238
Energy difference. See Residual energy
Energy flux, 144
Error function, 156
Euler equations, 97, 97
Euler’s formula, 72
Expected value, 24

Focussed transport equation, 195
Fokker-Planck equation, 149
Fokker-Planck operator, 138
Fourier transformation, 124

Gas

sound speed, 99
Geometric series, 4, 5,9
Gyrofrequency, 197

Hamiltonian, 86

Heat equation, 124
fundamental solution, 126
general solution, 126

Heat flux vector, 113

Heat kernel, 126

Heaviside step function, 206

Impact parameter, 85
Induction equation, 185
Interplanetary magnetic field, 204

Jacobian matrix, 211
Joint covariance, 70

Kaufmann representation, 177
K-operator, 177

Kurtosis, 35
Poisson distribution, 59

Lagrangian, 85

Landau collision operator, 149
Maxwell Boltzmann distribution, 153

Legendre polynomials, 133
generating function, 130, 131
orthogonality, 130
recursion relation, 131

Legendre’s differential equation, 129

Levi-Civita tensor, 163, 197

Lorentz force, 137

Lorentz scattering operator, 154

MacLaurin’s series, 31

Mathematical expectation. See Expected value

Median, 25

Method of characteristics, 80

MHD equations
ideal, 179
linearized, 214
one dimensional, 213

Mixed sound speed, 218

Mode, 25

Moment-generating function, 24, 32, 44
binomial distribution, 54
Gaussian or normal distribution, 63
Poisson distribution, 58

Motional electric field, 195

Pascal’s triangle, 146

Pdf. See Probability density function
Peculiar velocity. See Random velocity
Permittivity of free space, 88

Pitch angle, 196

Pressure tensor, 173

Probability density function, 9
Probability set function, 1

Quadrature spectrum, 71

Random variable, 7
Random velocity, 79

spherical coordinates, 196
Rankine-Hugoniot conditions, 114
Rate of momentum transfer, 139
Rate-of-strain tensor, 172
Rate of thermal energy transfer, 139, 144
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Residual energy, 239
Rodrigues’ formula, 130
Rutherford cross section, 91
Rutherford scattering, 88

Sample space, 1
Shock adiabatic, 188
Shock compression ratio, 228
Shock cubic, 190
Shock polar relation. See also Shock cubic
Shock wave, 115
downstream, 115
upstream, 115
Skewness, 32
Poisson distribution, 59
Solar wind
constant radial flow, 204
Spherical coordinates
divergence, 243
gradient, 243
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Stochastic independence, 50
Structural similarity hypothesis, 241
Survival analysis, 49

Theorem of finite series, 30
Thermal velocity. See Random velocity
Transport equation
correlation length, 246
Elsisser variables, 238
gyrophase average, 198
total turbulence energy , 242
WKB, 243
Turbulence
Kolmogorov, 246
Taylor, 246
von Karman, 246

Vlasov equation
relativistic, 209
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